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Abstract

The present document sets out to analyse the concept of insolvency risk in a firm and how
it can be objectively measured. Our main objective is to predict whether a firm will face an
insolvency situation, based on its most recent historical data stored in its accounts.
In order to achieve it, the prediction of insolvency risk is studied reviewing some of the most
relevant literature and explaining the accounting and financial implications which lie behind
it, understanding the concept of insolvency from this perspective. In mathematical terms,
this is an example of the so-called Problem of Classification (or Discriminant Analysis), which
is usually approached using Statistics. More specifically, the chosen way to mathematically
measure insolvency risk is through some of the most popular statistical prediction methods
which deal with this problem. Some of these methods consist of the classical Altman’s Z
Score, essentially equivalent to the Linear Discriminant, or more contemporary methods like
Classification and Regression Trees or Neural Networks.
These methods are applied on two samples. The first one is a sample of 40 Spanish firms
selected under some certain criteria, gathering its data from SABI database (Sistema de Análisis
de Balances Ibéricos). The second one is the sample that Professor E. I. Altman used in his
famous 1968 article, where he introduced its aforementioned Z Score.
A balanced approach between financial theory and statistical theory is used in order to effectively
convey the message that we cannot totally rely on the statistical methods without taking into
account the non-mathematical implications, for this is a complex issue involving many other
areas such as finance, accounting or economics.

Resum

El present treball té per objectiu analitzar el concepte de risc d’insolvència en una empresa i
com pot ser mesurat de forma objectiva. L’objectiu principal que ens plantegem és tractar de
predir si una empresa es veurà abocada a una situació d’insolvència, basant-nos en les seves
dades històriques més recents a nivell comptable.
Per tal d’assolir aquest objectiu, s’estudia la predicció del risc d’insolvència repassant l’evolució
històrica de la seva recerca a través de la literatura més destacada, i explicant les implicacions
comptables i financeres que hi ha al seu darrere, entenent el concepte d’insolvència des d’aquest
punt de vista.
En termes matemàtics, es tracta d’estudiar un exemple dins de l’anomenat Problema de Clas-
sificació (o Anàlisi Discriminant), que s’acostuma a tractar en Estad́ıstica. Concretament, la
manera escollida de mesurar matemàticament el risc d’insolvència és a través d’alguns dels
mètodes estad́ıstics de predicció més populars enfocats a aquest problema. Alguns d’aquests
mètodes comprenen des de la clàssica Z d’Altman, essencialment equivalent al Discriminador
Lineal, fins a mètodes més actuals com són els Arbres de Classificació i Regressió o les Xarxes
Neuronals.
Aquests mètodes s’apliquen a dues mostres de dades. La primera és una mostra de 40 empreses
espanyoles seleccionades segons uns certs criteris, les dades de la qual han estat extretes de la
base de dades SABI (Sistema de Análisis de Balances Ibéricos). La segona és la mostra que el
Professor E. I. Altman va utilitzar al seu famós article de 1968, on va introduir l’esmentada Z
d’Altman.
Hem optat per atorgar una importància similar tant a la part estrictament matemàtica com a la
part estrictament no matemàtica per tal de transmetre la idea de que cal tenir molt en compte
tota la teoria i totes les implicacions que queden al marge dels mètodes estad́ıstics pròpiament
dits, ja que es tracta d’un tema força complex que abraça moltes àrees tals com les finances, la
comptabilitat o l’economia.
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1 Introduction

1.1 Motivations and Objectives

A crucial issue within the business world is the study of corporate performance, which is
the analysis of the evolution of a firm throughout a certain period of time. Its study is of vital
importance because it diagnoses the situation of a firm in a specific moment in time and gives
answers to whether a firm is accomplishing its objectives. Taking into consideration the recent
global financial crisis as an example, it is in periods like that when corporate performance is
seriously threatened and therefore a great deal of analysis and prediction is needed.

The study of corporate performance, in its broader sense, has been largely studied since the
second half of the twentieth century and in many ways. For instance, it can be based on the
firm’s historical data, using the so-called Financial Statement Analysis. However, there is
still no universally-established approach capable of solving all the issues involved. Our belief is
that this limitation is due to its complexity and wideness. Corporate performance is complex
because there is no straight-forward way to objectively analyse it or measure it. This is because
a firm’s environment is usually large and therefore a lot of sources continuously contribute to
the determination of its performance. Corporate performance is also wide because it involves
different areas, basically Accounting, Finance, Economics and even Sociology. All of them are
capable of providing arguments to its interpretation.
Moreover, as the amount of mathematical techniques (mainly statistical techniques) that are of
use for such purposes and their sophistication increases, there is the need to continuously test
them in order to assess their validity. Therefore, corporate performance can also be interpreted
in terms of Statistics.

Consequently, for want of a better methodology, the usual way to approach its study is with
a set of complementary analyses and techniques to try to cover and explain as much of it as
possible, resulting in a varied list of conclusions extracted from all of them. The main objective
should be to make sure that the results are as coherent as possible.

To deal with corporate performance as a whole is far beyond our purposes. It is too ambitious.
Instead, we focus on one aspect: the characterisation and prediction of insolvency risk.
It is of paramount importance to consider the insolvency risk of a firm because it clearly has
enormous implications not only for its own becoming but also for the general interest, so it is a
key point within corporate performance.

The prediction of insolvency risk using Statistics became a popular area of research with the
publication of an article by E. I. Altman in 1968, where he introduced the famous Z Score. Due
to the relevance of this article, it is a good starting point within our own study and it is indeed
a fundamental reference.

There are two main objectives in our study. On the one hand, to introduce, from a theoretical
perspective, the traits of insolvency risk: what does it mean, what does it involve and what ele-
ments can be used to its determination. On the other hand, to formally explain some statistical
methods used for objectively measuring such risk. More specifically, within Statistical Theory
we can apply the measure of insolvency risk as an example of a more general problem called the
Problem of Classification. The appropriate statistical methods to this problem attempt to
classify a given observation into one group (and only one) of a set of mutually-exclusive groups.
In our specific case of insolvency risk there are two groups of firms in which a firm can be clas-
sified: ’failed’ firms and ’non-failed’ firms. The idea is that, if the prediction method classifies a
firm in the ’failed’ group, we expect its insolvency risk to be high, and if the prediction method
classifies it in the ’non-failed’ group, we expect its insolvency risk to be low.
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As previously mentioned, there are numerous methods and therefore we just touch on the
most popular ones: Linear Discriminant Analysis, Logistic Regression, k-Nearest Neighbours,
Classification and Regression Trees, and Neural Networks.

Another objective is to test these methods using two different samples, a recent one (called
Sample 1) and a historical one (called Sample 2 or Altman’s Sample), so that we can assess to
what extend each method predicts insolvency risk (the prediction capability) and also compare
them. More specifically, we test all the methods with Sample 1 and only test Linear Discriminant
Analysis with Sample 2, because this is the sample which Altman used in order to test LDA in
his article.

The reason why the two complementary groups are called ’failed’ and ’non-failed’ is because the
samples consist of firms which we already know whether they became insolvent or not. Strictly
speaking though, it would be more correct, given our purposes, to separate between ’solvent’
and ’insolvent’ firms, or even more correct, to separate between ’firms with high insolvency risk’
and ’firms with low insolvency risk’. We deal with all these terms in following sections.

In conclusion, introducing insolvency risk in this way will give us enough ground to make relevant
contributions to the subject and, at the same time, explore some relations and implications
involved not only in insolvency risk and in corporate performance, but also in Accounting,
Finance and Statistics.
This is why this document does not aim to offer a complete self-contained view of the subject
but a well-structured and coherent introduction to it, giving both the author and the reader the
opportunity to develop further research from it in any of the different perspectives contained.
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1.2 Methodological Approach and Structure

In order to study the characterisation and prediction of insolvency risk, in line with 1.1, we
have committed ourselves to strike a balance between Statistical Theory and Finance-
Accounting Theory, and also to strike a balance between theory and practice.
This is because we strongly believe that, in order to effectively present a good introduction to
the subject, we cannot attach more importance to a certain part and leave aside the rest of
them. In other words, in theory, every part should have the same relevance to the whole issue
and only by studying everything proportionately we will be able to reach coherent conclusions.
In practice, we must admit that Statistics account for a greater proportion but this does not
mean at all that the approach to the subject in terms of non-statistical analysis is poor. Neither
does it mean that we cannot reach coherent conclusions. They are simply different approaches
and we actually consider both.
Therefore, one approach is only based on Finance and Accounting Theory, and the other ap-
proach is only based on Statistical Theory. However, we will eventually realise that there are
important connections.

All things considered, the document is divided in two main sections: a theoretical framework
and a practical framework.
The theoretical framework contains all the theory needed prior to testing the statistical meth-
ods, namely Finance-Accounting Theory and Statistical Theory. Firstly, we take a general
look at some of the existent literature to explain how insolvency risk has been historically ap-
proached, highlighting two prominent researchers: R. A. Fisher and E. I. Altman. Secondly, we
introduce all the important elements with regards to Financial and Accounting Theory. This is
where key concepts such as return, solvency and risk appear. Finally, insolvency risk is treated
from a mathematical perspective, explaining the mathematical idea behind it and introducing
a selection of statistical methods: Linear Discriminant Analysis, Logistic Regression, k-Nearest
Neighbours, Classification and Regression Trees, and Neural Networks.
The practical framework introduces the two chosen samples and the selected predictors for each
of them, and explains the procedure followed to select them. Once these elements have been
properly introduced, we reproduce the results of the tests, relating them to the previous section
and explaining the most relevant details. The full code used in order to test the methods is
included in Appendix A so that the interested reader may consult it and complement it with
this section.
The document finishes with the conclusions obtained from both frameworks, specially after
testing the methods, and a list of some possible further developments from which continue our
work.
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2 Theoretical Framework

2.1 Historical Background

2.1.1 R. A. Fisher and E. I. Altman’s Pioneering Research

As stated in the introduction, corporate performance has been largely studied since the second
half of the twentieth century. Nevertheless, research concerning Statistics and, more specifically
the Problem of Classification, started earlier.

During the first half of the twentieth century, Sir Ronald A. Fisher (1890-1962) laid the
foundations of Modern Statistics and Experimental Design. According to [5], not only
was he pioneer in Multivariate Analysis but in almost every aspect of Statistics. He also made
great contributions to Biology (giving rise to Biostatistics) and Genetics.
Regarding the Problem of Classification, the genuine article was The Use of Multiple Measure-
ments in Taxonomic Problems, published in the Annals of Eugenics in 1936 ([9]). There, having
two or more populations measured in several characters, his objective was to determine certain
linear functions of the measurements by which the populations were best discriminated. He
introduced discriminant functions using observations from three kinds (groups) of Iris flowers
which became famous in time. So we can see that, for want of a more accurate explanation, the
only difference between Fisher’s research and our purposes is the study subject: flowers instead
of firms.
The ideas that Fisher introduced in the article have evolved to what it is known as Linear Dis-
criminant Analysis (LDA) or Fisher-LDA. We deal with it in 2.3.3, based on [8], [16] and
[7]. It is also interesting the appearance in the article of the so-called Analysis of Variance
(ANOVA), another important statistical concept which we are not going to discuss.

In terms of corporate performance, two of the pioneering researchers to take part in its study at
the beginning of the second half of the twentieth century were William H. Beaver (1940,-) and
Edward I. Altman (1941,-). The former was pioneer in determining which were the appropri-
ate variables to include in a suitable model, using Financial Statement Analysis and accounting
ratios. The latter was pioneer in choosing an appropriate statistical method, publishing it in the
article Financial Ratios, Discriminant Analysis and The Prediction of Corporate Bankruptcy,
in the Journal of Finance in 1968 ([3]).

Altman’s article has been quoted numberless times and it is one of our principal references. Its
title is self-explanatory; it focuses on predicting whether a firm will go bankrupt using financial
ratios and Discriminant Analysis, just like Fisher but talking about firms.
To him, the question became which ratios were most important in detecting potential bankruptcy,
what weights should be attached to those selected ratios and how should the weights be objec-
tively established. He went on to say that he chose Discriminant Analysis as the appropriate
statistical technique. With regards to the ratios, he built a list of twenty-two potentially helpful
ratios, again by using Financial Statement Analysis, and then he compiled it for evaluation,
ending up with only five ratios which he would use as predictors. This contrasts with Beaver,
who ended up selecting only one. This is why some references distinguish between Simple
Discriminant Analysis and Multiple Discriminant Analysis.

Once Altman had selected the predictors, he applied the method using a sample of 66 American
corporations. Our so-called Sample 2 is precisely this sample, provided by Professor Altman
himself, so we test test Linear Discriminant Analysis using it. In this case, the question is
whether we obtain the same results that Altman did forty-eight years ago.
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If we compare Altman’s article to our purposes we have to bear in mind that LDA is only one
of the methods that we study and that, much as we use data regarding ’failed’ and ’non-failed’
firms, insolvency risk and corporate bankruptcy are not synonymous. We clearly explain these
questions in following sections.
With respect to financial ratios, they also are the set of predictors used for Sample 1, so we
must explain its specific selection. However, the ratios that we consider differ from those of
Altman.
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2.1.2 Posterior Research

After the research led by Beaver (1966) and Altman (1968), accounting and finance academics
continued to analyse corporate performance and the prediction of corporate bankruptcy. Ac-
cording to [13], these analyses take two different approaches. The first one is based on account-
ing data, just like Beaver and Altman. The second one has an added source of information
which is market data, namely information which is external to the firm and therefore it is
determined by a firm’s environment. Broadly speaking, we may refer to it as the market. The-
oretically, adding market data to historical data like that stored on a firm’s accounts should
result in better approximations. The thing is, market data might not be always available, it
rather depends on the firm’s nature. On the other hand, a firm must always have some sort of
accounting information available.
In the following lines we will restrict ourselves to the first approach because ours is only based
on accounting data.

So, as we already know, the accounting approach basically uses financial ratios as predictors
(the variables of the model). As statistical techniques became more advanced, researchers were
allowed to came up with new models with greater prediction capability.

In 1977, nine years after Altman’s article, he alongside Robert G. Haldeman and Paul
Narayanan decided to make a second version to include seven more ratios to his model. Ac-
tually, what is relevant here is the technique used and not so much how many ratios were used
(or which ratios specifically).
Another statistical method included in this document is Logistic Regression. It was first devel-
oped by Ohlson in 1980 and Zmijewski in 1984.
A Recurrent Partitioning Algorithm (RPA) was used by Frydman, Altman and Kao in 1985,
whereas Mar-Molinero and Ezzamel in 1991, and Mar-Molinero and Neophytou in 2004
used a technique called Multi-Dimensional Scaling (MDS).
Neural Networks are a set of much more modern models that we decide to include in this doc-
ument because of its potential. These models were first used to this purpose by Tam and
Kiang in 1992.
Pawlak in 1982, McKee in 1995 and Slowinski and Zopounidis also in 1995 used Rough
Sets.
Zopounidis and Doumpos in 1999 and Voulgarirs, Doumpos and Zopounidis in 2000
used Utilities Additives Discriminant (UTADIS).

Logically, the above information must not be regarded as complete. We have only presented a
brief list of researchers based on [13]. In [11], for example, there is more information and the
interested reader may well want to take a look at it to complete this part.
Nevertheless, we highlight a couple of interesting comments from this reference. Firstly, that
models of prediction have become more and more sophisticated in order to be able to incorporate
the effects of financial crises or other outstanding business episodes. Secondly, that although
Neural Networks outperform traditional methods such as linear methods or heuristic methods
based on simple rules of thumb, the general comparison still remains as an open question.

It is not our purpose to explain all of the above methods since not all of them are included in the
document. The ones which will be duly studied in following sections are Linear Discriminant
Analysis, Logistic Regression and Neural Networks.
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2.2 Financial and Accounting Theory

2.2.1 Introduction to Accounting and Financial Statement Analysis

Accounting could be roughly described as the social science that aims to provide useful infor-
mation about a firm to all of its stakeholders, namely any kind of economic agent interested
in it. Usually, stakeholders are divided into the following six groups: credit grantors, equity
investors, managers, auditors, analysts and other interested groups. We refer to [6] for its
definitions.

The kind of information a stakeholder would expect about a firm is that which indicates, as
thorough and clear and relevant as possible, the firm’s performance over a specific period of time
(a whole year, for example), so that he or she can evaluate to what extent his or her investment
in the firm has been successful. Therefore, Accounting can be used (and it is actually used) in
order to measure corporate performance.

Despite the lack of general consensus among the literature about a universal definition, what
it is clear is that the main objective of Accounting can be achieved through the elaboration of
the so-called financial statements (or annual accounts), a set of written documents that
are subjected to a certain regulation, and therefore firms are committed to them.

In Spain, the main legal accounting document is the Accounting General Plan (Plan Gen-
eral de Contabilidad ([15])). In its first part, it states that a firm’s financial statements
consist of five documents, being the balance sheet and the income statement the two most
important ones. These documents are treated as a whole, they must be clear enough so that
the conveyed information is understandable and useful for the making of economic decisions,
and they must pursue a faithful picture of the patrimony of the firm, its financial condition and
the income it generates.
More specifically, the balance sheet is a snapshot of the firm’s situation on one very specific
day, usually the 31st of December. The balance sheet shows both sides of the same coin: on
one side the investment taken on by a firm up until this date (classified in assets) and on the
other side the financing committed by a firm in order to make such investment, up until this
date as well (classified in liabilities).
The purpose of the income statement is to determine whether a firm has been successful or not
during the whole year by means of calculating its profit (or, better said, its net income). In
order to determine such outcome, many accounts play a key role: sales, purchases, depreci-
ation, interests, taxes, etc.

It is clear then that the results arisen in these documents lead to financial implications which at
the same time result in conclusions about a firm’s performance. Like human beings, each firm is
unique, therefore we will obtain different conclusions for each one. However, we can join similar
firms together according to certain criteria and therefore study groups instead of individuals.
This kind of firm study based on its accounting information is our starting point.

According to [6], Financial Statement Analysis consists of the application of analytical tools
and techniques to financial statements in order to derive from them measurements, relation-
ships and interpretations significant and useful enough for decision making, and again, within
corporate performance.

The bottom line is that Financial Statement Analysis uses the financial statements elaborated
according to Accounting in order to provide results to the measure of corporate performance.

The interested reader may follow and expand the whole discussion in [6] and [17].
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2.2.2 Introduction to the Mathematics of Financial Operations

A Financial Operation is any exchange of monetary disposables among economic subjects in
different periods of time.

There are two Personal Elements: the Active Subject possesses the disposables and chooses
to give them during a certain amount of time. The Passive Subject receives the disposables
and commits itself to their future devolution.
The Objective Element are the monetary disposables exchanged by the economic subjects.
In order for any exchange to take place, it must exist an agreement of mutual wills between
the personal elements. This is the Conventional Element. The exchange is commanded by
an equivalence between each subject’s contributions. Usually, such an equivalence is formalised
through a commercial contract.

A Simple Financial Operation is the exchange of a certain capital for another one, with
different deferrals.

We denote (C, T ) a certain monetary disposable, where C is the monetary amount and T is the
deferral, measured from the origin of the operation, of the instant of this amount’s availability.
The set of all pairs of monetary disposables is

F = {(C, T )|C ∈ R+ ∪ {0}, T ∈ R+ ∪ {0}}.

We define an equivalence relation in F : two pairs of capitals are equivalent if and only if it
exists an implicit functional relationship between the components of the exchanged capitals:

(C, T ) ∼ (C ′, T ′)⇔ ∃ f | f(C,C ′, T, T ′) = 0

The following are the properties that ∼ satisfies. The two last ones refer to a strictly financial
meaning:

(i) Reflexive: ∀(C, T ) ∈ F (C, T ) ∼ (C, T )⇔ ∃ f | f(C,C, T, T ) = 0

(ii) Symmetric: ∀(C, T ), (C ′, T ′) ∈ F (C, T ) ∼ (C ′, T ′)⇒ (C ′, T ′) ∼ (C, T ) ⇔
∃ f | f(C,C ′, T, T ′) = 0⇒ ∃ f ′ | f ′(C ′, C, T ′, T ) = 0

(iii) Transitive: ∀(C, T ), (C ′, T ′), (C ′′, T ′′) ∈ F (C, T ) ∼ (C ′, T ′), (C ′, T ′) ∼ (C ′′, T ′′)⇒
(C, T ) ∼ (C ′′, T ′′) ⇔
∃ f, f ′ | f(C,C ′, T, T ′) = 0, f ′(C ′, C ′′, T ′, T ′′) = 0⇒ ∃ f ′′ | f ′′(C,C ′′, T, T ′′) = 0

(iv) Interest Positivity : Given two financial capitals of the same amount, it will be economi-
cally preferable that with the least deferral. It is also called Principle of Future Capital’s
Underestimation, and it can be formalised as:

(C, T ) ∼ (C ′, T ′), C ′ = C + ∆C, T ′ = T + ∆T ⇒ ε(∆C) = ε(∆T ),

where ε denotes the sign.

(v) Homogeneity in regard to amount : (C, T ) ∼ (C ′, T ′)⇒ ∀k ∈ R+∪{0} (kC, T ) ∼ (kC ′, T ′)⇔
∃ f | f(C,C ′, T, T ′) = 0⇒ ∀k ∈ R+ ∪ {0} ∃ fk | fk(kC, kC ′, T, T ′) = 0.
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Applying (v) for C > 0 and taking k = 1
C , we obtain f(C,C ′, T, T ′) = 0⇒ f 1

C
(CC ,

C′

C , T, T
′) = 0.

If we can explicit f 1
C

(CC ,
C′

C , T, T
′) = 0, then ∃f∗ |f∗(T, T ′) = C′

C ⇔ C ′ = Cf∗(T, T ′). f∗ is called

the financial factor.
It is not our purpose to study neither the properties of f∗ nor the different expressions that it
can take. We relate to [2] for the interested reader.

However, it is interesting to us to determine f∗ from an accounting perspective. We first need to
introduce one of the accounting principles defined in the Spanish Accounting General Plan.
This principle, which could be translated as the Principle of the Ongoing Firm (Principio
de Empresa en Funcionamiento) states that it is tacitly assumed that a firm will continue to
exist in the future, therefore all criteria applied do not consider at all the determination of the
firm’s value in order to transmit it or liquidate it.
In terms of financial operations, let (C, T ) be the capital that a firm possesses at a certain
instant of time and (C ′, T ′) the capital that a firm possesses at a later instant of time. Taking
this principle into account, then the pair {(C, T ), (C ′, T ′)} must satisfy that C ′ = C + Result,
where Result means a certain income generated by the firm during the period T ′ − T . Hence,

C ′ = C +Result⇔ C ′ = C(1 + Result
C )⇔ f∗(T, T ′) = 1 + Result

C .

From a financial perspective, the term Result
C is generally called a return. It is a function of

time, more specifically it is a function of T ′ − T . It is a way of indicating the performance
obtained by the firm in the period T ′−T . To our purposes we consider this period to be a year,
so it is an annual return.

We are now going to take a closer look to it, giving more thorough definitions to these concepts.
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2.2.3 Return

There can be many ways to define what we understand by the return on a firm. In line with
the concept of corporate performance introduced in 1.1, we may also say that it is the source
of the rewards required to compensate the stakeholders for the risks that they are assuming.
Likewise, there are many criteria by which return can be measured. Using Financial Statement
Analysis, the Return On Investment (ROI), which compares the income generated (Result)
to the capital invested (C) is one of the most valid and most widely recognized measures. It
allows us to compare it to alternative uses of capital and also to the return yielded by firms
operating in similar situations. ROI relates income (reward) to the size of the capital that was
needed to generate it. The investment of capital, which reflects on the volume of assets that a
firm possesses, can always yield some return, and the riskier the investment is the higher the
return required must be, in order to make it worthwhile.

So far, we have ROI = Income
Investment . What is important is to appropriately choose which Income

and Investment use. There is no widely accepted convention on these terms, instead each pair
simply results in a different way to determine ROI. For our purposes, we are going to choose
two different measures of both income and investment, thus resulting in two different ways of
determining ROI.

These four measures are four of the firm’s accounts, and its values are taken in a specific moment
in time. We refer to [6] or [17] in order to know about the nature of these accounts.

1. Using Total Assets as the investment:

When we compare the income generated to the total assets that a firm possesses at the start
of the year, we determine a return that is specifically called Return on Assets (ROA). In
order to consider the income derived from strictly the operating activity of the firm, we take
the Earnings Before Interests and Taxes (EBIT) as the income. Therefore, we have

ROITotal Assets = ROA = EBIT31−12−t
Total Assets01−01−t

.

2. Using Total Equity as the investment:

When we compare the income generated to the total equity of the firm at the start of the year,
we determine a return that is specifically called Return on Equity (ROA). In this case, we
take the Net Income (EBIT - Interests - Taxes) as the income. Therefore, we have

ROITotal Equity = ROE = Net Income31−12−t
Total Equity01−01−t

.

In 2.2.2 we introduced an accounting principle that we must always bear in mind, the Principle
of the Ongoing Firm. Right now we need to explain another one which is the Principle of
the Accrual (Principio del Devengo). It states that the effects of all transactions or economic
events in which the firm is involved will be registered whenever they occur their associated
revenues or expenses, and therefore they will belong to the financial statements of the year that
they refer to, regardless of the date of their associated payments or charges.
In short, this principle makes it clear that, in Accounting, revenues and expenses prevail over
payments and charges.
We are taking this principle into consideration when determining ROI because the values are
accounts taken from the income statement instead of the statement of cash flows. If we
had used the latter then the principle involved is the Principle of Cash (Principio de Caja),
in which payments and charges prevail over revenues and expenses.

10



The point here is that while all firms must comply with the income statement, the statement
of cash flows is only mandatory to some of them. Reasonably enough, the Principle of Cash is
not included in the list of the legal accounting principles. If we had used the Statement of Cash
Flows, the basic term involved is Cash F low = Net Income+Depreciation and, for example,
we could obtain a slightly different ROA ruled by the Principle of Cash. This approach is
beyond the scope of our work, mainly because it involves dealing with data that are normally
unavailable or hard to get.

In any case, for the interested reader we refer to [6], which gives a comprehensive account not
only of this subsection but of the whole section.
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2.2.4 Solvency

If return is one leg of our study, then the other leg is solvency. Again, the concept of solvency
is sometimes ambiguous because it may be used in many different subjects. To our purposes, we
define solvency as a firm’s ability to comply with two different requirements: firstly, the ability
to meet its financial commitments (capability), and secondly, the ability to do it in a specific
moment in time (punctuality).
Bearing in mind that our study refers to annual returns, it is sensible to frame solvency within
the same period of time and therefore talk about capability within a year and punctuality within
a year.

Many references treat solvency and capability as synonymous and tend to forget punctuality
or not distinguish it. We want to emphasize that in our work solvency depends on these two
separate factors. Therefore, a firm may be solvent because it achieves capability or punctuality,
but a firm is insolvent if it fails to achieve both capability and punctuality.

Another important thing is that with our definition of solvency we avoid talking about liquidity,
which also appears in most references and may be also confusing. Normally, liquidity measures
the degree to which a firm can meet its short-term obligations (one example would be according
to [6]). Much as we could force to make this concept appear in our definition by considering
short-term capability and long-term capability, we prefer to keep things simple and not to
distinguish between short-term and long-term.

Because of this two-dimensional component, there are four types of firms according to solvency:
firms with both high capability and high punctuality (firms that might have some sort of
dominant position), firms with high capability but low punctuality (typically pharmacies), firms
with high punctuality but low capability (typically banks), and firms with both low capability
and punctuality (insolvent firms).

In order to measure both the capability and the punctuality of a firm using its accounting data,
multiple ratios may be applied and therefore there is a potential danger of redundancy and
overlapping. Instead of providing a long list of possible ratios, we prefer to make a selection
coherent with our definitions. Contrary to the ratios of return, now we do not compare the
end of the year to the start of it but all data refer to the end of the year. This is because the
concept of return is associated with the yield of capital, implying an evolution in time, whereas
the concept of solvency is associated with a firm’s situation, implying a specific moment in time.

As in 2.2.3, the following measures involve some of the firm’s accounts, and its values are taken
in a specific moment in time, at the end of the year. We refer to [6] or [17] in order to know
about the nature of these accounts.

1. Capability Ratios:

• Current Assets−Inventories
Total Assets

This ratio weighs some kinds of assets over the total volume. More specifically, we only take
into consideration the most liquid assets, namely Current Assets - Inventories = Receivables
+ Cash. Being the most liquid assets means that they are the ones most easily converted to
cash.
The use of this ratio is justified in the idea that the more liquid assets a firm has the more able
it will be to meet its financial obligations. We exclude the inventories because the volume of
this account substantially varies among firms and also among sectors, and therefore it could be
distorting in some cases.
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• Current Assets
Total Liabilities

This ratio weighs the proportion of debt that a firm holds in comparison to those assets that are
expected to be liquidated within a year. This ratio shows, in a specific instant, whether a firm
can pay its debts thanks to liquidating its current assets. It would not be correct to consider
the total volume of assets because, for instance, a firm would not normally liquidate its Non
Current Assets, according to the Principle of the Ongoing Firm.

• Total Equity
Total Liabilities

Similarly to the previous ratio, this one describes the structure of the financing leg of the firm,
being the investing leg the other one. The objective is to know whether a firm relies more on
the capital given by its shareholders or on lent capital. The answer has great implications both
for return and solvency itself, because there are two agents involved, shareholders and lenders,
who demand different kinds of returns to their investment.

2. Punctuality Ratios:

• Average Payment Period = Accounts Payable
Purchases · 365

By computing this ratio in terms of days, the result shows how long (how many days) does it
take for the firm to pay its creditors. The volume that the firm owes to its creditors is in the
account Accounts Payable.
Normally it is the longer the better, but the best way to interpret it is pairing it with the next
ratio and determining the difference. Also, it is important to distinguish between Accounts
Payable and debt; in terms of Accounting, Accounts Payable are only one portion of the total
amount of debt.

• Average Receivable Period = Accounts Receivable
Sales · 365

By computing this ratio in terms of days, the result shows how long (how many days) does it
take for the firm’s debtors to pay the firm. The volume that the firm owns to its debtors is in
the account Accounts Receivable.
Normally it is the shorter the better, but the best way to interpret it is pairing it with the other
ratio and determining the difference.

So, if APP − ARP is positive, it means that a firm possesses enough cash which enables it to
pay its creditors. If the difference is negative, the firm faces paying its creditors without having
previously received cash from its debtors. Ideally, we would expect the difference to be equal
to zero, meaning that there is no gap whatsoever regarding payments and receivables.

These two punctuality ratios only involve one part of the debt. The point is that they provide
a good reference in order to determine what would happen with the other agents that the firm
currently owes because these accounts very much represent the ordinary operating cycle of the
firm.
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2.2.5 Insolvency Risk: Connecting Return and Solvency

In this subsection we finally connect return and solvency, the two basic legs of Financial State-
ment Analysis. The main concept here is risk, and more specifically insolvency risk.

The firm’s risk is the probability of loss, reflected in either repeatedly obtaining a negative
income or experiencing a decrease in its assets’ value (or an increase in its liabilities’ value).
If such is the outcome, then a firm might experience financial distress (in terms of risk it is
common to name it credit risk or default risk, although some references like [17] treat them
as different), and if it happens during a certain period of years there is a high chance that the
firm ends up going bankruptcy.
Although this might be a correct approach to the issue, it does not match our purposes because
there is no trace of insolvency risk and we want to only consider insolvency risk. Then, how do
we redefine it?
The firm’s risk may increase either because it increases the firm’s inability to meet its long-
term obligations or because it increases the firm’s inability to meet its short-term obligations.
In short, it increases the firm’s inability to meet its obligations, involving both paying and
complying with the dates. This is what we call insolvency risk, relating it to capability and
punctuality.
It is important to remember that the inability to pay is strongly correlated with the inability
to liquidate its currents assets.

When talking about return, we stated that the riskier the investment is the higher the return
required must be, in order to make it worthwhile. Risk had not been introduced then. So, this
means that there is a functional relation between risk and return.
More specifically and in terms of insolvency risk, what we are saying is that the higher the
insolvency risk is the higher the return is expected to be and vice versa. In terms of ratios, the
more positive a solvency ratio is, the more negative a return ratio should be, and vice versa.
This leads us to finally stating that return and solvency move in opposite directions. A firm
would normally deal with the decision of whether to pursue large returns at the expense of
potentially experiencing financial difficulties or the other way round.

For example, if a firm turns out to be solvent because its volume of assets exceeds its volume
of liabilities and because it is punctual, this normally results in a large volume of cash readily
available to utilise. The firm may be solvent but this is at the expense of offering a low return
to its stakeholders because this cash accounts for capital that is not generating any kind of
income.

Think of a government as a firm and that we want to invest in it. If we acquire government
bonds, for instance, we expect them to have a low risk exposure. Another way to say this is
that a government is generally solvent. Therefore, these kinds of products offer a low return.
Contrary to this example we know that if we invest in a turbulent firm the risk is going to be
higher, offering low prospects of solvency, but we are expecting a higher return in compensa-
tion.

There could arise the question of what about those firms that show good indicators of both
return and solvency. Such an outcome can only be obtained if the firm finds itself to be in some
sort of dominant position, where it is entitled to fix its own terms.

If a firm is not able to generate income (so it is facing low returns), and it finds it difficult
to liquidate its assets in order to balance the situation, then the firm’s risk may also increase,
although this would depend on the amount of debt the firm owes.
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The bottom line is that in theory there exists f such that return = f(solvency) = f(capability,
punctuality) and, more specifically, that there generally is a trade-off between return and
solvency.
Therefore, both return and solvency prove to be useful when assessing insolvency risk. This is
why we detailed both return ratios and solvency ratios and we will certainly use both of them.
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2.2.6 Consequences of Insolvency Risk

As mentioned previously, insolvency risk is usually associated with financial distress, insol-
vency (obviously), failure, default and bankruptcy. According to [4], although these terms
are sometimes used interchangeably, they are distinctly different in their formal usage. The
point is that there are actually not synonymous. We are not really interested in the exact
differences but in the path that a Spanish firm might walk into if insolvency risk gradually
increases. We specify Spanish because the legal procedure undertaken and the terms involved
in it may vary across countries, although it is the same idea.

We recall that a firm gets to experience financial distress either due to the repeated obtaining of
a negative income or due to a continuous decrease in its assets’ value (or a continuous increase
in its liabilities’ value). If financial distress becomes regular, then we expect insolvency risk
to progressively increase. Eventually, the firm can reach a stage where it is no longer able to
proceed with its usual activity, therefore being compelled to start a legal procedure called Con-
curso de Acreedores, which could be approximately translated as Corporate Bankruptcy
Reorganisation. To use compelled is a bit misleading, since this procedure may start either
because the firm itself agrees to make such a declaration or because some stakeholder demands
it. An interesting remark here is that, in fact, a considerable amount of time can pass between
the instant in which it is logical for the firm to make such a declaration and the instant in which
it is effectively made. There are numerous reasons for this delay but the majority of them obey
to a decision made by the own firm.

The objective of this procedure is to restructure the firm’s accounts so that it can go back to a
non-distressed state and to normal activity. More specifically, an agreement between the firm
and its stakeholders can be reached involving either the exchange of debt for equity (debt’s con-
donation) or the extension of the payment terms (swapping current liabilities for non current
liabilities). In any case, it is a judicial process and it is treated as such.
Not all the reasons which lead a firm to this stage can be solved through this procedure, for
example improving a firm’s income. This obviously depends on multiple other factors and a
firm has to deal with it differently, but it is sort of paradoxical.

Is it possible to reach such agreements? Well, for example, if a firm proves that despite its
situation it has a high ROA, then there might be a chance to override the situation by making
the suppliers become shareholders. But again, this depends on the judge’s view and all the
information available for his or her judgement.

If the legal process comes to an end without reaching an agreement, we call this situation
bankruptcy or we say that the firm has failed or has gone bankrupt. In this case the process of
liquidation starts: the firm must liquidate all its assets selling them and try to pay all its debts
with the sell. Once the firm is liquidated the firm may be born again (start from scratch) or it
ceases to exist.

Finally, we would like to give a figure, which can be consulted in the Spanish National Statis-
tics Institute (Instituto Nacional de Estad́ıstica (INE), www.ine.es), concerning the
number of such legal procedures occurred in Spain. During the four-year period 2004-2007
there was registered a total of 3,069 cases, whereas during the seven-year period 2008-2014 that
number sky-rocketed to 42,771 cases. In Spain, the first period is considered as of economic
prosperity, while the second period is considered as of economic recession. This is just an empir-
ical way to illustrate that normally, when a country does not face a tough economic situation,
it is rather unlikely for a generic firm to inevitably reach this stage.
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2.3 Statistical Theory

2.3.1 Elements of Multivariate Analysis

In order to introduce the Problem of Classification and some statistical methods that deal with
it, we first need to present some basic elements of Multivariate Analysis.

According to [8], Multivariate Analysis is the area of Statistics and Data Analysis which
studies, represents, analyses and interprets data consisting of observations of more than one
variable from a sample of individuals.

We first look at the one-dimensional case (Univariate Analysis). Mathematically, a sample
of n > 1 observations of a certain variable X (in our context that would be one ratio observed
in n firms) is simply a set of n scalars xi ∈ R, i = 1, ..., n which can be considered as a vector
x ∈ Rn,

x =

 x1
...
xn

.

We only have a finite number of observations of X, just a sample (we only have data from n
specific firms). In terms of Probability, we only know n values of the random variable X.

The mean of x is x̄ = 1
n

n∑
i=1

xi = 1
n1T · x, where 1 ∈ Rn is the vector whose all components are

1 and T indicates the transposed vector.

The centred set of observations is xi0 = xi − x̄, i = 1, ..., n. In terms of x,

x0 =

 x10
...
xn0

 = x− 1 · x̄

We define the total sum of squares as T =
n∑
i=1

x2
i0 =

n∑
i=1

(xi − x̄)2 = ‖x0‖2 = ‖x‖2 − nx̄2,

where ‖·‖ denotes the Euclidean norm. Hence, the variance of x is s2
x = 1

nT .

Now let us assume that the n observations are subdivided in g > 1 groups so that nα = #{i ∈ α},

α = 1, ..., g and
g∑

α=1
nα = n (in our context that would be g = 2 different groups, ’failed’ firms

and ’non-failed’ firms). Without loss of generality, we may assume that the observations are
ordered so that

x =

 x1
...
xg

,

x1 ∈ Rn1 , ...,xg ∈ Rng . We calculate the g group centroids: x̄α = 1
nα

∑
i∈α

xi, α = 1, ..., g and we

center each group in its mean: xα0 = xα − 1nα · x̄α, α = 1, ..., g. Hence, x̄ =
g∑

α=1

nα
n x̄α.

We define the sum of squares within each group α as Wα = ‖xα0‖2 = xα0
T ·xα0 =

∑
i∈α

(xi−x̄α)2.
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Hence, the group variance is s2
xα = 1

nα
Wα, and the sum of these g sums is called the within

groups sum of squares: W =
g∑

α=1
Wα.

Dividing it by n we obtain the so-called pooled within groups variance: Spl = 1
nW =

g∑
α=1

nα
n s

2
xα .

Now, let us consider the mean group vector

M =

 x̄1
...
x̄g

,

which again can be centred with respect to x̄:

M0 =

 x̄1 − x̄
...

x̄g − x̄

,

and calculate the so-called between groups sum of squares: B =
g∑

α=1
nα(x̄α − x̄)2.

Proposition 2.3.1.1. These sums of squares verify T = W +B.

Proof: xi − x̄ = (xi − x̄α) + (x̄α − x̄), xi ∈ α, α ∈ {1, ..., g} ⇒ (xi − x̄)2 = (xi − x̄α)2 +

(x̄α − x̄)2 + 2(xi − x̄α)(x̄α − x̄)⇒
∑
i∈α

(xi − x̄)2 = Wα + nα(x̄α − x̄)2 ⇒ T =
g∑

α=1

∑
i∈α

(xi − x̄)2 =

g∑
α=1

Wα +
g∑

α=1
nα(x̄α − x̄)2 = W +B �

Now we look at the multidimensional case. Let us now consider n > 2 p-dimensional vectors
xi ∈ Rp, i = 1, ..., n which can be considered as a matrix X ∈ M(Rn,Rp) usually called the
multivariate data matrix (or simply the data matrix),

X =

 x1
T

...
xn

T

 =

 x11 · · ·x1p
...

xn1 · · ·xnp

.

The mean vector of X is x̄ = 1
n

n∑
i=1
xi = 1

n1T · X. We centre each vector, xi0 = xi − x̄,

i = 1, ..., n. In terms of X,

X0 =

 x10
T

...
xn0

T

 = X − 1 · x̄ = J ·X,

where J = Idn − 1
n1 · 1T . X0 is usually called the centred data matrix.

The total scatter matrix is T =
n∑
i=1
xi0 · xi0T = X0

T ·X0 = XT · J ·X ∈ M(Rp,Rp), and

the covariance matrix of X is S = 1
nT . T (and therefore S) is a symmetric matrix, as

T T = (X0
T ·X0)T = X0

T · (X0
T )T = X0

T ·X0 = T .

18



Now, any linear combination of the centred sample z = X0 · b ∈ Rn, b ∈ Rp \ {(0, ..., 0)},
”transforms” n vectors into n scalars. What is more, the variance of these n scalars is

s2
z = 1

nz
T · z = 1

nb
T ·X0

T ·X0 · b = bT · S · b≥ 0.

If we assume that S is non-singular, then bT · S · b > 0.
A real squared matrix M ∈ M(Rp,Rp) is said to be positive definite if vT ·M · v > 0 for all
v ∈ Rp \ {(0, ..., 0)}. Therefore, in that case S is a positive definite matrix.

The correlation matrix of X is R = D−1
s · S ·D−1

s , where Ds = diag(
√
diag(S)), meaning

that its diagonal elements are the square root of the diagonal elements of S.

From the above definitions, rg(X) = rg(X0) and rg(S) = rg(R). The proof that rg(S) =
rg(X0) may be found in [14].

Now, as with the one-dimensional case, let us assume that the n observations are subdivided in
g > 1 groups so that the n rows of X are subdivided in g > 1 groups and nα = #{i ∈ α}, α =

1, ..., g,
g∑

α=1
nα = n. Likewise, without loss of generality we may assume that the observations

are ordered so that

X =

 X1
...
Xg

,

X1 ∈M(Rn1 ,Rp), ...,Xg ∈M(Rng ,Rp). We calculate the g group centroids: x̄α = 1
nα

∑
i∈α
xi =

1
nα

1Tnα ·Xα, α = 1, ..., g and we center each group in its mean: Xα0 = Xα−1nα ·x̄α = Jα ·Xα,

α = 1, ..., g, where Jα = Idα − 1
nα

1nα · 1nαT . Hence, x̄ =
g∑

α=1

nα
n x̄α.

We define the scatter matrix within each group α as Wα = Xα0
T ·Xα0 = Xα

T · Jα ·Xα.

The group covariance matrix is Sα = 1
nα
Wα. We also assume that Sα is non-singular,

α = 1, ..., g. Hence, the sum of these g matrices is called the within groups scatter ma-

trix: W =
g∑

α=1
Wα.

Dividing it by n we obtain the so-called pooled within groups covariance matrix: Spl = 1
nW =

g∑
α=1

nα
n Sα.

Now let us consider the matrix of group means

M =

 x̄1
T

...
x̄g

T

,

which again can be centred with respect to x̄:

M0 =

 (x̄1 − x̄)T

...
(x̄g − x̄)T

,

and calculate the so-called between groups scatter matrix: B =
g∑

α=1
nα(x̄α−x̄)·(x̄α−x̄)T =

M0
T ·Dn ·M0, where Dn = diag(n) = diag(n1, ..., ng).
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Proposition 2.3.1.2. These scatter matrices verify T = W +B.

The interested reader may consult the proof, review and expand the whole subsection in [8],
[14] or [16].
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2.3.2 The Problem of Classification

The prediction of insolvency risk is, in terms of its mathematical approach, an example of a
problem which in the statistical literature is called the Problem of Classification, framed
within the field of Pattern Recognition and Machine Learning. The following notes are
taken from [7] and [8], where they are explained in much greater detail.

Pattern Recognition and Machine Learning is concerned with the discovery of regularities in
data and the use of these regularities to basically classify data into different categories, usually
called groups or populations.
In this field it arises the so-called Curse of Dimensionality: having to deal with spaces of
high dimensionality, comprising many input variables. Therefore, some statistical methods are
also aimed to dimensionality reduction. About this issue, two examples would be Principal
Component Analysis (PCA), which we are not going to discuss, and Linear Discriminant
Analysis (LDA), which is discussed in the next subsection. On the one hand, PCA searches
the direction which maximises the variance of the data within an homogeneous population. On
the other hand, LDA searches the direction which maximises the group separation, therefore
assuming that data are divided into different groups.

Before we continue, we must make it clear that, for convenience, in this subsection and in other
subsections of 2.3, we do not consider the general case of g groups. Whenever it is not specified,
it is assumed that g = 2.

To our purposes, what we specifically want is to classify a firm into two mutually excluding
(complementary) groups: in insolvent firms or in solvent firms, based on certain available infor-
mation of it.

So, let Ω1,Ω2 be any two populations and X1, ..., Xp p observed variables of them. We denote
x = (x1, ..., xp) the observations of the variables of one individual ω. The Problem of Classi-
fication, also called The Problem of Identification or Discriminant Analysis, attempts
to assign ω to one of the two populations. There are numerous real-life examples in which this
objective makes sense apart from insolvency risk: deciding whether to grant a loan, determining
whether a tumour is benign or malign, identifying the species to which a plant belongs,...

A discriminant rule is a criterion which allows us to assign ω knowing (x1, ..., xp) through a
discriminant function D(x1, ..., xp). The rule for classification is:

If D(x1, ..., xp) ≥ 0, we assign ω to Ω1

Otherwise, we assign ω to Ω2

This rule divides Rp in two regions

R1 = {x ∈ Rp | D(x) ≥ 0}, R2 = {x ∈ Rp | D(x) < 0}.

It is clear that we will fail if we assign ω to a population which does not belong to. The
probability of erroneous classification in terms of conditional probabilities is

ecp = P (R2 ∩ Ω1) + P (R1 ∩ Ω2) = P (R2 | Ω1)P (Ω1) + P (R1 | Ω2)P (Ω2).

In terms of densities,

ecp = P (ω ∈ R2,Ω1) + P (ω ∈ R1,Ω2) =

∫
R2
P (ω,Ω1)dω +

∫
R1
P (ω,Ω2)dω.
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There are other approaches that do not use a discriminant function but these probabilities
instead. They involve Decision Theory because it is a two-stage process: inference and
decision. The idea is the following:
We are interested in the probabilities of the two populations conditioned to the observations,
namely P (Ωk | ω), for each population Ωk, k = 1, 2. We solve the inference problem of de-
termining the population-conditional probabilities P (ω | Ωk) and the population probabilities

P (Ωk), and then using Bayes’ Theorem, P (Ωk | ω) = P (ω|Ωk)P (Ωk)
P (ω) = P (ω|Ωk)P (Ωk)

2∑
i=1

P (ω|Ωi)P (Ωi)

, k = 1, 2.

Once these probabilities are found, we decide the population of each new input ω based on, for
example, minimising the probability of erroneous classification.

These probabilities are generally unknown and we are not going to determine them. Instead,
when necessary we will have to make estimations of these probabilities using the information
available, namely our samples.
As an example, when estimating the probability of erroneous classification, we use as an estima-
tor the misclassification rate: it can be calculated using a confusion matrix, and it simply
counts the number of mistakes made in the prediction, and then weighing these numbers with
respect to the size of the sample.
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2.3.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is sometimes also referred as Fisher-LDA or Canon-
ical Discriminant.

Let us go back to Fisher’s work, in which LDA was publicly introduced for the first time. In his
1936 article, quoted in 2.1.1, Fisher starts by saying: when two or more populations have been
measured in several characters [...], special interest attaches to certain linear functions of the
measurements by which the populations are best discriminated. In his context, there are four
variables x1, x2, x3, x4 observed in two populations. So, LDA considers a linear discriminant
function X = λ1x1 + λ2x2 + λ3x3 + λ4x4, the easiest possible option.
He goes on to say: [...] the particular linear function which best discriminates the two species
will be one for which the ratio D2/S is greatest, by variation of the four coefficients λ1, λ2, λ3, λ4

independently, where D denotes the difference between the means of X and S denotes a linear
combination of the within groups sums of squares. At this stage it is still not clear what D and
S exactly mean. We will soon clarify them.

Let us now use [5] and [16] to formalise these latest concepts and the rest of the subsection.

In order to determine the desired linear discriminant function for two groups we assume that
the groups have the same population covariance matrix Σ but different mean population vectors
µ1,µ2.
So, using the same notation as in 2.3.1, let X be a sample of size n > 2 divided in two groups
of size n1 > 1 and n2 > 1, n1 + n2 = n, so that

X =

(
X1

X2

)
,

X1 ∈ M(Rn1 ,Rp),X2 ∈ M(Rn2 ,Rp). With the notation x11, ...,x1n1 ,x21, ...,x2n2 , where
xij ∈ Rp, i = 1, 2, j = 1, ..., ni, it is

X =



x11
T

...
x1n1

T

x21
T

...
x2n2

T


.

Let the difference in the sample group means be d = x̄1 − x̄2 and let the sample (pooled
within groups) covariance matrix be

S̃pl = 1
(n1−1)+(n2−1)W = 1

n−2(W1 +W2) = 1
n−2((n1 − 1)S1 + (n2 − 1)S2),

where W is the within groups scatter matrix redefined so that Sα = 1
nα−1Wα, α = 1, 2. This

factor change does not invalidate the previous results.

Although they look similar, S̃pl 6= Spl = 1
n(n1S1 + n2S2).
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Proposition 2.3.3.1. S̃pl is symmetric and positive definite.

Proof: Two squared matrices A and B satisfy (A+B)T = AT +BT , (rA)T = rAT ∀r ∈ R and

(AT ·A)T = AT ·A. In particular, S1 and S2 are symmetric. Hence,

S̃pl
T

= ( 1
n−2((n1 − 1)S1 + (n2 − 1)S2))T = n1−1

n−2 S1
T + n2−1

n−2 S2
T = n1−1

n−2 S1 + n2−1
n−2 S2 =

1
n−2((n1 − 1)S1 + (n2 − 1)S2 = S̃pl and S̃pl is symmetric.

For α ∈ {1, 2}, Sα is positive definite because the variance of z = Xα0 · b ∈ Rn,

b ∈ Rp \{(0, ..., 0)} is s2
z = 1

nα−1z
T ·z = 1

nα−1b
T ·Xα0

T ·Xα0 ·b = bT ·Sα ·b ≥ 0, and assuming

that Sα is non-singular, then bT · Sα · b > 0.

Now, bT · Sα · b > 0 ⇒ bT · rSα · b = r bT · Sα · b > 0 ∀r ∈ R+ \ {0} ⇒ nα−1
n−2 Sα is positive

definite.

Finally, bT · (n1−1
n−2 S1 + n2−1

n−2 S2) · b = (bT · n1−1
n−2 S1 · b) + (bT · n2−1

n−2 S2 · b) > 0 and S̃pl is positive
definite. �

Proposition 2.3.3.2. S̃pl is non-singular.

Proof: If S̃pl was singular, det(S̃pl) = 0⇒ ∃b∗ ∈ Rp \ {(0, ..., 0)} satisfying S̃pl · b∗ = 0⇒
∃b∗ ∈ Rp \{(0, ..., 0)} satisfying (b∗)T · S̃pl ·b∗ = 0 and S̃pl would not be positive definite⇒ S̃pl
is non-singular. �

This proposition guarantees the existence of the inverse of S̃pl.

Proposition 2.3.3.3. S̃pl
−1

is also symmetric and positive definite.

Proof: According to the definition of a matrix inverse, S̃pl
−1

is the only matrix satisfying

S̃pl
−1
· S̃pl = Idp, S̃pl · S̃pl

−1
= Idp. Transposing, we obtain that the matrix (S̃pl

−1
)T satisfies

S̃pl · (S̃pl
−1

)T = Idp, (S̃pl
−1

)T · S̃pl = Idp ⇒ S̃pl
−1

= (S̃pl
−1

)T and S̃pl
−1

is symmetric.

Also, ∀b ∈ Rp \ {(0, ..., 0)} bT · S̃pl · b > 0. Taking b̃ = S̃pl
−1
· b 6= (0, ..., 0), as S̃pl

−1
is

non-singular, we have b̃
T
· S̃pl · b̃ = bT · (S̃pl

−1
)T · S̃pl · S̃pl

−1
· b = bT · S̃pl

−1
· b > 0 and S̃pl

−1

is positive definite. �

Proposition 2.3.3.4. S̃pl is an unbiased estimator of the common population covariance matrix
Σ.

Proof: In general, if θ is an unknown population parameter, an estimator θ̂ of θ is said to be
an unbiased estimator of θ if E[θ̂] = θ. In our case, we must proof that E[S̃pl] = Σ. Using the
properties of sum and scalar product of the expectation,

E[S̃pl] = E[ 1
n−2((n1 − 1)S1 + (n2 − 1)S2))] = n1−1

n−2 E[S1] + n2−1
n−2 E[S2].

For α ∈ {1, 2}, Sα satisfies E[Sα] = Σα, where Σα is the population covariance matrix of the
α group. We refer to [16] for its proof.
Our hypothesis is that Σ1 = Σ2 = Σ. Hence,

E[S̃pl] = n1−1
n−2 Σ + n2−1

n−2 Σ = (n1−1)+(n2−1)
n−2 Σ = Σ. �

Now, let us consider any linear combination of the observed variables

z = bT · y = (b1, ..., bp) · (y1, ..., yp)
T = b1y1 + ...+ bpyp,

where y is any observation.
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The difference in the sample means of this linear combination is z̄1 − z̄2 = bT · d, and the
sample variance of Z is SZ = bT · S̃pl · b, which is an estimator of the variance of Z.
Now it is clear that, in terms of Fisher’s notation, X = z, D = bT · d and S = SZ . Therefore,
the objective is to maximise

(bT ·d)2

bT ·S̃pl·b

with respect to b.

A solution is b = S̃pl
−1
·d or any multiple of it. Thus, the maximising vector b is not unique but

its direction. This is the vector perpendicular to the separation hyperplane, which in the case
g = 2, is a line. Hence, bT · y projects points y onto the line on which that ratio is maximised.

For this b we have z̄1 − z̄2 = dT · S̃pl
−1
· d and hence

(bT ·d)2

bT ·S̃pl·b
= dT · S̃pl

−1
· d.

The linear function bT · y = dT · S̃pl
−1
· y is the desired linear discriminant function. So, it

is pretty straightforward to apply LDA, since we only require the sample group means x̄1, x̄2

and the sample (pooled within groups) covariance matrix S̃pl.

Once it is determined, we can classify a future observation y. To determine whether y is closer
to x̄1 or x̄2, we see if z is closer to the transformed mean z̄1 or z̄2: we evaluate z for each

observation x1i, i = 1, ..., n1, and obtain z11, ...,z1n1 ⇒ z̄1 = bT ·ȳ1 = dT ·S̃pl
−1
·ȳ1. Similarly,

z̄2 = bT · ȳ2. Therefore, we assign y to the first group if z is closer to z̄1 than to z̄2 and we
assign y to the second group if z is closer to z̄2 than to z̄1.

Let us prove that z is closer to z̄1 if z ≥ 1
2(z̄1 + z̄2):

Since z̄1 − z̄2 = bT · d = dT · S̃pl
−1
· d > 0 because S̃pl

−1
is positive definite, we have z̄1 > z̄2.

Since 1
2(z̄1 + z̄2) is the midpoint, z ≥ 1

2(z̄1 + z̄2) implies that z is closer to z̄1.

To express the classification rule in terms of y:
1
2(z̄1 + z̄2) = 1

2d
T · S̃pl

−1
· (x̄1 + x̄2)⇒ we assign y to the first group if

bT · y = dT · S̃pl · y ≥ 1
2d

T · S̃pl
−1
· (x̄1 + x̄2),

and we assign y to the second group if

bT · y = dT · S̃pl
−1
· y < 1

2d
T · S̃pl

−1
· (x̄1 + x̄2).

In terms of 2.3.2, D(x1, ..., xp) = bT · y − 1
2d

T · S̃pl
−1
· (x̄1 + x̄2).

The procedure described consists in solving a problem of relative eigenvectors and eigen-
values. This can be seen more clearly if we consider the ratio which has to be maximised as the
function J(w) = wT ·B·w

wT ·W ·w , where B and W are the scatter matrices defined in 3.2.1. Although
the two ratios look apparently different, it can be proved that in the case of g = 2 groups they
lead to the same results. For example, S̃pl and W are proportional, hence their inverse matrices
are also proportional. This results in a different eigenvalue but the same eigenvector, the same
direction after all.

We add this comment because it may possibly look more intuitive: the idea is to look for the
greater separation between groups and the lower separation within groups.
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2.3.4 Logistic Regression

We introduce this method using [8].

Contrary to LDA, Logistic Regression is a regression model for Logistic Discriminant
Analysis. This model allows us to estimate the probability of an event which hinges on certain
correlated variables.

First of all, let us introduce this analysis. Assume that an event E may happen or not in each
of the individuals of a certain population (in our context, E is to face insolvency). We consider
a binary variable y taking

y = 1 if E happens, y = 0 if E does not happen.

If the probability of E does not depend on other variables, if we denote p := P (E), then the
likelihood of an observation y is

L = py(1− p)1−y,

because L = p if y = 1 and L = 1− p if y = 0.

If we have n independent observations y1, ..., yn, the likelihood is

L =
n∏
i=1

pyi(1− p)1−yi = p

n∑
i=1

yi
(1− p)

n−
n∑
i=1

yi
,

where
n∑
i=1

yi is the absolute frequency of E in the n observations. Using the maximum likeli-

hood estimation, to estimate p we solve the likelihood equation

∂
∂p ln L = 0,

whose solution is p̂ = 1
n

n∑
i=1

yi, the relative frequency of E in the n observations. The asymptotic

distribution of p̂ is normal N(p, p(1−p)n ).

However, in our context the probability of E does depend on other variables. Suppose that
p depends on certain variables X1, ..., Xp (the ratios in our case). If x = (x1, ..., xp)

T are the
variable observations of a certain individual ω, the probability of E given x is P (y = 1 | x) =:
P (x). The complementary probability is P (y = 0 | x) =: 1− P (x).

The regression model fitted is

ln( P (x)
1−P (x)) = β0 + β1x1 + ...+ βpxp = β0 + βT · x,

where β = (β1, ..., βp)
T is the regression parameters vector. This model is equivalent to assume

the following probabilities in terms of x:

P (x) = eβ0+β
T ·x

1+eβ0+β
T ·x , 1− P (x) = 1

1+eβ0+β
T ·x

Given an individual ω and assuming that the parameters have been estimated, the logistic
discriminant rule decides that ω possesses E if P (x) > 1

2 and it does not possess E if P (x) ≤ 1
2 .
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In terms of the discriminant function D(x1, ..., xp) = Lg(x) = ln( P (x)
1−P (x)), the logistic decision

rule is:
If Lg(x) > 0 then y = 1, if Lg(x) ≤ 0 then y = 0.

The likelihood of n observations x1, ...,xn is

L =
n∏
i=1

P (xi)
yi(1− P (xi))

1−yi ⇒ ln L =
n∑
i=1

yiln(P (xi)) + (1− yi)ln(1− P (xi)).

We solve the equations

∂
∂βj

ln L = 0, j = 0, 1, ..., p

in order to find the maximum likelihood estimators of the parameters.

For i = 1, ..., n we have ln(P (xi)) = β0 + βTxi − ln(1 + eβ0+βTxi), hence

∂
∂β0

ln(P (xi)) = 1− eβ0+β
T ·xi

1+eβ0+β
T ·xi

= 1− P (xi)

∂
∂βj

ln(P (xi)) = xij − xij eβ0+β
T ·xi

1+eβ0+β
T ·xi

= xij(1− P (xi)), j = 1, ..., p.

Likewise, we have ln(1− P (xi)) = −ln(1 + eβ0+βTxi), hence

∂
∂β0

ln(1− P (xi)) = − eβ0+β
T ·xi

1+eβ0+β
T ·xi

= −P (xi)

∂
∂βj

ln(1− P (xi)) = −xij eβ0+β
T ·xi

1+eβ0+β
T ·xi

= −xijP (xi), j = 1, ..., p.

We then obtain the likelihood equations to estimate the parameters,

∂
∂β0

ln L =
n∑
i=1

yi
∂
∂β0

ln(P (xi)) + (1− yi) ∂
∂β0

ln(1− P (xi)) =
n∑
i=1

(yi − P (xi)) = 0,

∂
∂βj

ln L =
n∑
i=1

yi
∂
∂βj

ln(P (xi)) + (1− yi) ∂
∂βj

ln(1− P (xi)) =
n∑
i=1

xij(yi − P (xi)) = 0, j = 1, ..., p.

Unfortunately, these equations cannot be solved explicitly and we must resort to iterative nu-
merical procedures.

Finally, we must say that this model holds a problem in our context. It can be proved that the
maximum likelihood estimators of the parameters do not exist if the population samples are
completely separated, which is precisely the desired objective in the Problem of Classification.
In that case, the parameters must be estimated differently.
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2.3.5 k-Nearest Neighbours

The following notes are elaborated using [16].

The k-Nearest Neighbours (KNN) method is an example of a non-parametric method,
contrary to LDA an Logistic Regression which are examples of parametric methods.
In terms of Probability, non-parametric methods try to estimate probabilities but making few
assumptions about the form of the distributions involved. Let y1, ...,yn be a sample of p
observed variables, yi ∈ Rp, i = 1, ..., n. We fix k ∈ {1, ..., n− 1}.
For i = 1, ..., n we calculate the distance from an observation yi to all the other observations
yj , j = 1, ..., î, ..., n using the Mahalanobis distance function

(yi − yj)T · S̃pl
−1
· (yi − yj), j = 1, ..., î, ..., n,

where S̃pl
−1

is the sample (pooled within groups) covariance matrix introduced in 2.3.3.

It is a distance because S̃pl
−1

is symmetric and positive definite.

In order to classify yi into one of the two groups, using the distance we take the k nearest
observations to yi. We count the number of observations k1 which belong to the first group and
the number of observations k2 = k − k1 which belong to the second group. The classification
rule is simple:
If n = n1 + n2 and n1 = n2 ⇒ If k1 > k2 we assign yi to the first group, otherwise we assign yi
to the second group.
If n = n1 + n2 and n1 6= n2 ⇒ If k1

n1
> k2

n2
we assign yi to the first group, otherwise we assign

yi to the second group.

A decision must be made as to the value of k. In practice, the most common election is to try
several values of k and end up using the one with the lowest misclassification rate.

Although k-Nearest Neighbours method has a simple structure, it has some drawbacks. The
most important one, specially when there is a high volume of data, is that the sample must
be stored for every observation added. Also, there is the fact that k cannot change during the
procedure.
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2.3.6 Classification and Regression Trees

In this subsection we talk about a set of non-linear predictive models called Prediction Trees.
We only deal with a specific type of Prediction Trees called Classification and Regres-
sion Trees (CART). There are others like the Iterative Dichotomiser 3 (ID3) (and its
descendants), Automatic Interaction Detection (AID) or Chi-squared Automatic In-
teraction Detection (CHAID).

Let us first introduce some basic considerations about Prediction Trees.

A Prediction Tree consists of nodes and edges (or branches). It starts in the so-called root node.
Each node represents an election between some alternatives which are in turn represented by
the branches attached to the node. More specifically, the ramifications correspond to partitions
of the set of observations. The partition is made according to a question about the value of a
certain variable, and the criterion for the question sequence depends on what do we want to
maximise.
The majority of Prediction Trees are binary, meaning that in each node there is an election
between two alternatives, involving two predictors.
Each terminal node (or leaf) represents a value of the response variable.

Let us now describe the general procedure for CART.

This type of Prediction Trees consists of a binary recursive partition. CART accepts both
quantitative and qualitative variables for predictor or response. The idea is to start from a root
node which contains all sample cases and look for the binary distinction which gives us the most
information possible about a group. We then take each of the resulting new nodes and repeat
the same action, continuing the recursion until we reach the stopping criterion chosen.
One stopping criterion can be of node homogeneity (homogeneity maximisation), meaning that
all the elements of a node have the same response value. Another possible stopping criterion
can be that it stops when the number of elements in a terminal node is lower to a certain fixed
value. Finally, a third stopping criterion can be in terms of the tree depth, meaning that it
stops when the number of nodes divided by branches and leaves is greater than a certain fixed
value.
Finally, once the tree is built, there is an optional second procedure of pruning, which means
eliminating any irrelevant branches. This is evaluated using cross-validation, a general proce-
dure beyond Prediction Trees which will be duly explained in 3.4.

In our context, Classification Trees try to predict a discrete category (a group) rather than a
numerical value (being that the case of Regression Trees). The differences between these two
types have to do with how the information is measured, what kind of predictions does the tree
make, and how do we measure the prediction error.

The tree can make two types of predictions: a point prediction or a distributional prediction.
The former simply predicts the group that sequence of nodes has led to, while the latter gives
the estimate group probability.

We choose that the measurement of the prediction error is through the misclassification rate,
as it is discussed in 2.3.2 and it is exemplified with our samples in 3.4.

The interesting part is the information measurement. We present the following two alternatives,
although it is more common in CART to use the first one.
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On the one hand, the Gini Impurity Measure shows how often a randomly chosen element
from the step set would be incorrectly classified if it was classified according to the distribution
of groups in the subset.
The Gini Impurity Measure of the relative frequency vector f = (f1, ..., fp), where fi is the
relative frequency of classifying into group i, i = 1, ..., p is

G(f) =
p∑
i=1

fi(1− fi) = 1−
p∑
i=1

f2
i .

This measure reaches its minimum (zero) when all observations in the node fall into the same
group. So, looking for the lowest value of this measure in each step encourages the formation
of regions in which a high proportion of observations are assigned to one group.

On the other hand, the entropy is a basic concept within Information Theory, so we first
give some notes about it using [7], [18] and [19], and referring to them for further details.

Information Theory, among many other uses, is one way to mathematically formalise ideas
about uncertainty reduction and discrimination. This is why it is used alongside Probability
Theory and Decision Theory.

Let X be a random variable. We ask how much information is received when we observe a
specific value x of X. We may think of the amount of information as the ’degree of surprise’ on
learning the value X = x.

This information measure is a function h(x) defined as h(x) := −ln(P (x)), if X is discrete, and
h(x) := −ln(f(x)), if X is continuous with density f .
The lower probability an event has, the higher the information we receive.

We define the entropy of X as

H[X] :=
∑
x∈X

P (x)h(x) = −
∑
x∈X

P (x)ln(P (x)),

if X is discrete, and

H[X] :=

∫
Im(X)

f(x)h(x) = −
∫

Im(X)

f(x)ln(f(x)),

if X is continuous with density f , in which case it is called the differential entropy.
It indicates the value of X in terms of its average amount of information. Because lim

p→0
p ln(p) =

0, we shall take P (x)ln(P (x)) = 0 or f(x)ln(x) = 0 whenever x is such that P (x) = 0 or
f(x) = 0.

Now assume that we have a discrete random vector (X,Y ). If a value x of X is already known,
then the additional information needed to specify the corresponding value of Y is given by
−ln(P (y | x)), where P (y | x) = P (y,x)

P (x) is the (conditional) probability of X = x conditioned to
Y = y.

The conditional entropy of Y given X = x is

H[Y | X = x] := −
∑
y∈Y

P (y | x)ln(P (y | x)).
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The average additional information needed to specify Y given X can be written as

H[Y | X] :=
∑
x∈X

P (x)H[Y | X = x] = −
∑
x∈X

P (x)

(∑
y∈Y

P (y | x)ln(P (y | x))

)
=

= −
∑

x∈X,y∈Y
P (y, x)ln(P (y | x)),

which is called the conditional entropy of Y given X.

The results are similar in the case of a continuous random vector (X,Y ) with joint density
f(X,Y ) and marginal densities fX , fY . If a value x of X is already known, then the additional
information needed to specify the corresponding value of Y is given by −ln(f(y | x)), where

f(y | x) :=
f(X,Y )(x,y)

fX(x)

is the conditional density of Y with respect to X = x.

The conditional entropy of Y given X = x in this case is

H[Y | X = x] := −
∫
Im(Y )

f(y | x)ln(f(y | x))dy.

The average additional information needed to specify Y given X in this case can be written as

H[Y | X] :=

∫
Im(X)

fx(x)H[Y | X = x]dx = −
∫

Im(X)

fx(x)

 ∫
Im(Y )

f(y | x)ln(f(y | x))dy

 dx =

= −
∫

Im(X)

 ∫
Im(Y )

f(y, x)ln(f(y | x))dy

 dx,

which is called the conditional entropy of Y given X.

Proposition 2.3.6.1. A random vector (X,Y ) satisfies H[X,Y ] = H[X] + H[Y | X], where
H[X,Y ] is the joint entropy of (X,Y ).

Proof: We prove the equality in the discrete case.
The joint entropy of (X,Y ) is defined as

H[X,Y ] = −
∑

x∈X,y∈Y
P (x, y)ln(P (x, y)),

so we must prove that

−
∑

x∈X,y∈Y
P (x, y)ln(P (x, y)) = −

∑
x∈X

P (x)ln(P (x))−
∑

x∈X,y∈Y
P (y, x)ln(P (y | x)).

∑
x∈X,y∈Y

P (y, x)ln(P (y | x))−
∑

x∈X,y∈Y
P (x, y)ln(P (x, y)) =

∑
x∈X,y∈Y

P (y, x)(ln(P (y | x))−

ln(P (x, y))) =
∑

x∈X,y∈Y
P (y, x)(ln(P (y | x))−ln(P (y, x))) =

∑
x∈X,y∈Y

P (y, x)(ln(P (y,x)
P (x) )−ln(P (y, x))) =

−
∑

x∈X,y∈Y
P (y, x)ln(P (x)) = −

∑
x∈X

(∑
y∈Y

P (y, x)

)
ln(P (x)) = −

∑
x∈X

P (x)ln(P (x)). �
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So, the information needed to describe X and Y is given by the sum of the information needed
to describe X alone plus the additional information required to specify Y given X.

If (X,Y ) is a random vector, the difference in entropies H[Y ] −H[Y | X = x] =: I[Y ;X = x]
is called the realised information, and it tells us how much our uncertainty about Y has
changed thanks to observing X = x. Hence, the expected information (or the mutual
information) of (X,Y ) is

I[Y ;X] := H[Y ]−H[Y | X].

This is precisely what it can be used in every step of the classification tree in order to maximise
the information gain. More specifically, in our context we consider a discrete random vector
(Y,A) where Y is the response variable taking the g ”values” g1, ..., gp, and A is the answer to
some binary question about the predictors X = (X1, ..., Xp). Formally, A = 1A(X) for some
set A. The idea is that, in each step, we measure how much do we learn about Y from knowing
a certain A, namely I[Y ;A]. Once the branches of a node have been determined, we repeat the
procedure not with the whole sample but only with the observations of that node, according to
recursive partition.

In order to determine this values we use the relative frequencies of the sample because the
probabilities are unknown.
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2.3.7 Neural Networks

The reference used in this subsection is [7].

Neural Networks have their origins in the attempts to find mathematical representations
of information processing in biological systems. These networks are characterised by a high
number of very simple units, like biological neurons, hence the name.
However, it has been used in a wide range of areas. We regard them as a set of efficient models
for information processing and pattern recognition, therefore also potentially useful within the
Problem of Classification.

The linear models for regression and classification are based on linear combinations of fixed
basis functions φi(x) and take the general form

y(x, b) = f(
m∑
i=1

biφi(x)),

where f is generally a non-linear function sometimes called an activation function. For ex-
ample, it is the identity in the case of regression. Neural Networks extend the model by making
φi(x) depend on parameters and then allow them to be adjusted, alongside bi, during the so-
called training procedure. This is why it is regarded as an adaptive method.

The model which we are interested in is the feed-forward neural network, also called the
multilayer perceptron. Each unit with which this neural network is built is called Rosen-
blatt’s perceptron, so we first explain it.

Rosenblatt’s perceptron imitates the functioning of a biological neuron. Let x1, ..., xp be p inputs
which are multiplied by a weight v = (v1, ..., vp), obtaining the superposition

v1x1 + ...+ vpxp.

In terms of neurons, if this quantity exceeds a certain threshold c, the neuron is triggered and
turns from a base state (−1) to an activity state (1).

Formally, let (x1, y1), ..., (xn, yn) be n observations of p variables paired with their respective
target values, xi ∈ Rp, yi ∈ {−1,+1}, i = 1, ..., n. The perceptron is determined by the
vectorial parameter v ∈ Rp and the scalar c ∈ R. The separation hyperplane is

H = {x ∈ Rp | vT · x− c = 0}.

For i = 1, ..., n, the prediction is

ŷi =

{
+1, if vT · x− c ≥ 0
−1, if vT · x− c < 0

= ε(vT · x− c),

where ε denotes the sign. We can determine the corresponding error function based on the
comparisons between yi and ŷi.

One of its most important characteristics, which we will later see that it can also be applied
to the multilayer perceptron, is its learning capability, the learning of the perceptron. This
means that we can improve its prediction capability by minimising the error function.
A simple way of carrying this out is through an algorithm with an implemented iterative method
such as the Gradient Descent Method or the Newton-Raphson Method.
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The Gradient Descent Method is an iterative method which searches for a minimum of a function
f . Given an approximate point zi, the method calculates a better approximation zi+1 :=
zi − ηf ′(zi), where η is the learning speed.

Newton-Raphson Method is just a variant of Gradient Descent Method. It calculates a solution
of the equation f ′(z) = 0 approximating f ′ through its tangent line. The tangent line passing
through the point (zi, f

′(zi)) to f ′ graphic crosses the x-axes in the point zi+1 which satisfies

0− f ′(zi) = f ′′(zi)(zi+1 − zi).

Hence, zi+1 = zi − f ′(zi)
f ′′(zi)

.

Let us illustrate Gradient Descent Method in the context of the perceptron. Assume that, for
i ∈ {1, ..., n}, the chosen error function is

Errori(v) = [−yi(vT · xi)]+ =

{
−yi(vT · xi), if −yi(vT · xi) ≥ 0
0, if −yi(vT · xi) < 0

.

Its derivative is ∂Errori(v)
∂v = −yixi, hence vk+1 = vk + ηyixi for a certain k ∈ N. So, if we

choose a learning speed η ∈ R+, in the k-step the algorithm would correct a misclassified point
(xi, yi) by adjusting vk+1 = vk + ηyixi.

Let us now explain the multilayer perceptron. As previously stated, it is also called a feed-
forward neural network. This is because these networks consist of various unit layers. The
outputs of the first layer become the inputs of the second layer and so on. Strictly speaking
this is called function superposition: the independent variable of a function is the dependent
variable of the previous one.

First, we construct m linear combinations of the input variables x = (x1, ..., xp)

ai =
p∑
j=1

b
(1)
ij xj + b

(1)
i0 ,

where i = 1, ...,m and (1) indicates that the corresponding parameters are in the first layer

of the network. The parameters b
(1)
ij are weights and the parameters b

(1)
i0 are biases. The

quantities ai are activations.

Each of them is then transformed using a differentiable non-linear activation function h to give

zi = h(ai), i = 1, ...,m,

the hidden units. Usual examples of the chosen h are the hyperbolic tangent or the logistic
function σ(a) = 1

1+e−a .

These values are again linearly combined to give output unit activations

ak =
m∑
i=1

b
(2)
ki zi + b

(2)
k0 , k = 1, ..., n,

where n is the total number of outputs and (2) indicates that this transformation corresponds
to the second layer of the network.

Finally, the output unit activations are transformed using another appropriate activation func-
tion h̃ to give a set of network outputs yk. In this case, for standard regression problems the
activation function is the identity, so that yk = ak, and for classification problems the activation
function is the logistic function, so that yk = σ(ak) = 1

1+eak .
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Hence, the overall network function for k = 1, ..., n is

yk(x, b) = h̃

(
m∑
i=1

b
(2)
ki h(

p∑
j=1

b
(1)
ij xj + b

(1)
i0 ) + b

(2)
k0

)
,

where the set of all weight and bias parameters have been grouped together into a vector b. In
short, this Neural Network model is simply a non-linear function from a set of input variables
{xi} to a set of output variables {yk} controlled by a vector b of adjustable parameters. The
process of evaluating the function can be interpreted as a forward propagation of information
through the network.

We have shown the multilayer perceptron for two layers. It can be easily generalised by pro-
cessing multiple layers, each one consisting of a weighted linear combination

ak =
m∑
i=1

b
(2)
ki zi + b

(2)
k0 , k = 1, ..., n

followed by an element-wise transformation using a certain non-linear activation function.

When comparing Rosenblatt’s perceptron to the multilayer perceptron, we see that Rosenblatt’s
perceptron is the unit with which the multilayer perceptron is built. The multilayer perceptron
is made of multiple units, and in each unit there is a vectorial function. While Rosenblatt’s per-
ceptron is restricted to linear predictions (linear functions involved), the multilayer perceptron
obtains non-linear predictions (non-linear functions involved).

The same ideas of the learning of Rosenblatt’s perceptron can be applied to the multilayer per-
ceptron. More specifically, in the Problem of Classification in two groups, the procedure above
described can be applied.
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3 Practical Framework

3.1 SABI Database

SABI stands for Sistema de Análisis de Balances Ibéricos, which could be translated
as Analysis System of Iberian Balances. It is a database offered by Bureau Van Dijk, a
globally-specialised firm in gathering and analysing data. We are entitled to a basic subscription
of the database as members of the Universitat de Barcelona (UB).

SABI contains financial and accounting information over 2.000.000 Spanish firms and over
500.000 Portuguese firms, although we will not need the Portuguese ones.

Once a firm is selected, it contains general details about it (see Figure 3.1.1) and accounting
data (see Figures 3.1.2 and 3.1.3), for instance we find there the balance sheet and the income
statement for a certain period. In some cases there may be available other financial statements
like the statement of cash flows, but we will not need it either.

Our task is to build Sample 1 gathering the necessary data from SABI. For every firm belonging
to the sample, we export all the data needed to a spreadsheet so that we can treat it more
conveniently.

The following three figures illustrate three snapshots of SABI.

We refer to [10] in order to know more about how to use this database.

Figure 3.1.1: General details of INDUSTRIA DE DISEÑO TEXTIL SA

Figure 3.1.2: Overview of the available information of INDUSTRIA DE DISEÑO TEXTIL SA

36



Figure 3.1.3: Balance sheets of INDUSTRIA DE DISEÑO TEXTIL SA

3.2 Sample 1 Details and Selected Predictors

Sample 1 contains two types (or groups) of firms. In line with the theoretical framework, one
group consists of firms that have started that legal procedure so-called Corporate Bankruptcy
Reorganisation, and the other group have not. Just for our convenience, we will refer to the
first group as ’failed’ firms and to the second group as ’non-failed’ firms. Strictly speaking this
is incorrect, as these terms are not synonymous.

In order to build this sample we use a Case-Control Procedure, meaning that we first add
a failed-type firm and then we paired it with one (or more than one) non-failed-type firm. The
pairing is done by selecting non-failed-type firms that had not started the legal procedure the
same year than the failed-type firm. We decide to use a 1:3 proportion, so we select three
non-failed-type firms for each failed-type firm.
The using of this procedure and this proportion is justified in the fact that it is reasonable to
assume that only a quite small number of Spanish (and in general) firms end up starting the
legal procedure. It would not be reasonable, for example, that the sample had the same number
of the two types of firms. That would be somehow implying that the probability of insolvency
is 0.5, which the experience tells us that it is certainly not the case.
Consequently, Case-Control Procedure is also used in epidemiology, for example.

More specifically, Sample 1 consists of 40 Spanish firms with the following characteristics:

- Of the 40 firms, 10 are failed-type firms and 30 are non-failed-type firms.

- They are Spanish firms legally constituted as either Incorporated (Inc., in Spanish Sociedad
Anónima (SA)) or Limited (Ltd., in Spanish Limitada (SL)).

- They belong to sector ”A(Agriculture, Forestry and Fishing).01: Crop and animal production,
hunting and related service activities”, according to NACE Rev.2 Classification. There is no
specific reason behind the choosing of this sector, we could have chosen another sector. What it
is important is that we must build a sample with firms belonging to the same sector, otherwise
it would not be reasonable either because experience again tells us that the activity sector is a
strong factor when it comes to compare similar firms.
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- For each firm, we select data of only one specific year. In the case of the failed-type firms,
it is the year in which the firm started the legal procedure. There are some firms which their
year of start of the legal procedure is posterior to the last year of available data. In these cases,
we decide that the year selected is the last year of available data. Once a failed-type firm is
selected, the year selected for the non-failed-type firms paired with it is the same. The years
selected belong to the period 2007-2014. The fact that the first possible year is 2007 is due to
the Accounting General Plan: it was updated in 2007, so it is basically a legal reason behind
the election. We cannot take data posterior to 2014 because at the time of the writing of this
document the financial statements for 2015 are not finished yet.

Table 3.2.1 shows the list of the 10 failed-type firms alongside the 30 non-failed-type firms.

Table 3.2.1: Firms of Sample 1

Each firm of the sample has seven observations so we can say that the sample is made of ele-
ments of R7. The seven observations are the seven ratios (or predictors) which we introduced
in the theoretical framework and that we recall now:

R1 = Current Assets−Inventories
Total Assets

R2 = Current Assets
Total Liabilities

R3 = Total Equity
Total Liabilities

R4 = ROITotal Assets = ROA = EBIT31−12−t
Total Assets01−01−t

R5 = ROITotal Equity = ROE = Net Income31−12−t
Total Equity01−01−t

R6 = Average Receivable Period = Accounts Receivable
Sales · 365

R7 = Average Receivable Period = Accounts Receivable
Sales · 365
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Table 3.2.2 shows the resulting dataset (or sample observations) which can be viewed as a matrix
M ∈ (R40,R7).

Table 3.2.2: Sample 1 observations
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3.3 Sample 2 Details and Selected Predictors

Sample 2 (or Altman’s Sample) is the sample used by E. I. Altman in his famous 1968 article.
Its characteristics are described in [3], and we refer to it in order to fully understand how
Altman carried out the process. The sample is composed of 66 American corporations with 33
firms in each group. The first group consists of bankrupt firms, namely manufacturers that
filed a bankruptcy petition according to the National Bankruptcy Act during the period
1946-1965. The second group consists of data from the same period of firms which were still in
existence in 1966.

As opposed to Sample 1, in this case bankrupt firms are not homogeneous because they do not
belong to a specific sector. What Altman did to make up for this bias was to carefully select
the non-bankrupt firms by stratifying firms by industry and by size, resulting in a paired group
sample.

Each firm of the sample has five observations so we can say that the sample is made of elements
of R5. The five observations are the following five ratios, selected by Altman:

X1 = Working Capital
Total Assets

X2 = Retained Earnings
Total Assets

X3 = Earnings Before Interest and Taxes
Total Assets

X4 = Market V alue of Equity
Book V alue of Total Debt

X5 = Sales
Total Assets

Table 3.3.1 shows a fragment of the resulting dataset (or sample observations) which can be
viewed, as a whole, as a matrix M ∈ (R66,R5).

Table 3.3.1: Fragment of Sample 2 observations

40



3.4 Results Obtained

In order to apply the previously defined statistical methods on the two samples we use R, a free
statistical software. Since we only show here the final results, the R scripts used are attached
in Appendix A to understand how the whole process was carried out. For example, for each
sample the first script (LDA script) contains basic descriptive statistics prior to computing the
method itself.

Before showing the results obtained for every method, we need to explain a couple of statistical
concepts that are required to understand how can R produce the results. More specifically,
in some methods, R allows us to use two types of step-wise procedures called Leave-one-out
(LOO) and Akaike Information Criterion (AIC). Let us briefly explain them.

The portion of a dataset (it may be the whole of it) utilised to fit a model is called the training
set. According to [7], the performance on the training set may be in some cases not a good
indicator of the predicted performance on unused data due to the problem of over-fitting, which
arises when too many parameters are estimated.
If available data are plentiful, it is possible to only use some of them to fit the model and then
test its prediction capability (and compare it to other models) using a so-called validation set.
In the case that data are scarce, even if we divide our sample into a training set and a validation
set, it may give a relatively noisy estimation of the predictive performance (due to over-fitting
or other reasons), therefore resulting in a higher probability of erroneous classification.

In order to improve this estimation, a cross-validation procedure can be used: if S denotes a
certain number of parts in which our data can be divided, it allows a proportion S−1

S of it to
be used for training while making use of all of the data to assess performance.

The LOO procedure considers S = N , where N is the size of the sample. LOO is a practical way
to cross-validate when the sample is small. Therefore, when testing our samples using LDA,
Logistic Regression and KNN in R, we use LOO technique so that in every step the training
set is of size N − 1 and the prediction is applied to the remaining observation.

The ”plug-in” procedure, which uses the same training set, is another way to estimate, but
contrary to cross-validation, it provides a biased estimator.

According to [7], another procedure to specially avoid over-fitting is actually a set of criteria
called information criteria. These criteria attempt to strike a balance between the maximum
likelihood estimation and the number of parameters. They penalise the addition of parameters
to increase the maximum likelihood estimation. One of these criteria is the AIC, defined in [1]
(see the reference for more precision and deeper understanding) as

AIC = −2ln(maximum likelihood) + 2k,

where k is the number of estimated parameters. So, the larger the AIC is, the worse the model
is deemed.
When testing our samples using Logistic Regression in R, we use AIC criterion so that in
every step the objective is to improve the previous AIC calculated by varying the number of
estimated parameters. We do not use this criterion in the LDA because it is not implemented
in R, although it could be done manually.

Let us now present the results obtained in terms of 2.3 notation. In all the results concerning
Sample 1, we assume that the first group is the failed-type firms group and the second group is
the non-failed-type firms group (and similarly for Sample 2). We recall that we only use Sample
2 (Altman’s Sample) in LDA, in order to see whether we obtain the same results.
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LDA Results:

Applying the procedure described in 2.3.3 to Sample 1, the coefficients vector has the following
components:
b1 = −5.368213, b2 = 0.2991109, b3 = −0.1324579, b4 = 0.7307353, b5 = −30.37555,
b6 = −0.0002449891, b7 = 0.001235236.
Dividing the vector by b7, for example, we obtain:
b1 = −4345.902, b2 = 242.1489, b3 = −107.2329, b4 = 591.5756, b5 = −24590.89,
b6 = −0.1983339, b7 = 1.
Logically, we obtain the same results if we directly use the ’lda’ function in R.
Hence, the linear discriminant function is bT · y = (b1, ..., b7) · (y1, ..., y7)T = −4345.902y1+
242.1489y2 − 107.2329y3 + 591.5756y4 − 24590.89y5 − 0.1983339y6 + y7.

The confusion matrix obtained (using LOO) is(
c11 c12

c21 c22

)
=

(
10 0
10 20

)
,

where c11 is the number of failed-type firms correctly classified as failed-type, c12 is the number
of failed-type firms incorrectly classified as non-failed-type, c21 is the number of non-failed-type
firms incorrectly classified as failed-type, and c22 is the number of non-failed-type firms correctly
classified as non-failed-type. Hence, c11 + c12 + c21 + c22 = n1 + n2 = n.

The misclassification rate is êcpSample 1
LDA = 1− c11+c22

n = 1− 10+20
40 = 10

40 = 0.25.

Applying the procedure described in 2.3.3 to Sample 2, the coefficients obtained are:
b1 = −0.015380337, b2 = −0.018263460, b3 = −0.041833488, b4 = −0.007699163,
b5 = −1.254215201.
If we divide the coefficients by b5 and round them to three decimals, we obtain:
b1 = 0.012, b2 = 0.015, b3 = 0.033, b4 = 0.006, b5 = 1.000, which are the same ones appearing in
Altman’s 1968 article.
Logically, we obtain the same results if we directly use the ’lda’ function in R.
Hence, the linear discriminant function is bT ·y = (b1, ..., b5) · (y1, ..., y5)T = 0.012y1 + 0.015y2 +
0.033y3 + 0.006y4 + y5.

The confusion matrix obtained (using LOO) in this case is(
17 16
16 17

)
.

The misclassification rate is êcpSample 2
LDA = 1− 17+17

66 = 16
33 = 0.

_
48.

Logistic Regression Results:

Using the ’glm’ function in R, the confusion matrix (without using LOO) is(
7 3
1 29

)
.

The misclassification rate is êcpSample 1
Log. Reg. = 1− 7+29

40 = 1
10 = 0.1.

Using the ’glm’ function in R, the confusion matrix (using LOO) is(
6 4
3 27

)
.
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The misclassification rate is êcpSample 1
Log. Reg. = 1− 6+27

40 = 7
40 = 0.175.

We recall that the maximum likelihood estimators of the parameters do not exist if the popula-
tion samples are completely separated, and therefore they must be estimated differently. This
is why, depending on the data provided, R could not apply well the method using the ’glm’
function and give warnings because of it. This is what happens with Sample 1, we obtain results
but we cannot entirely trust them. Instead, we need to use other functions which solve this
issue, for instance the ’glmnet’ function, contained in a specific R package with the same name.

KNN Results:

For k ∈ {1, 2, 3}, using the ’knn.cv’ function in R, the confusion matrices and the misclassifica-
tion rates obtained (using LOO) are the following:

· k = 1: (
5 5
4 26

)
, êcpSample 1

KNN = 1− 5+26
40 = 9

40 = 0.225

· k = 2: (
4 6
5 25

)
, êcpSample 1

KNN = 1− 4+25
40 = 11

40 = 0.275

· k = 3: (
4 6
2 28

)
, êcpSample 1

KNN = 1− 4+28
40 = 1

5 = 0.2

CART Results:

Using the ’rpart’ function in R, Figure 3.4.1 shows the tree obtained, using Gini Impurity
Measure.

Figure 3.4.1: Tree obtained, using Gini Impurity Measure, for Sample 1

The confusion matrix and misclassification rate are

(
8 2
5 25

)
, êcpSample 1

CART = 1− 8+25
40 = 7

40 = 0.175
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Using the ’rpart’ function in R, Figure 3.4.2 shows the tree obtained, using entropy.

Figure 3.4.2: Tree obtained, using entropy, for Sample 1

The confusion matrix and misclassification rate obtained, using entropy, are

(
8 2
1 29

)
, êcpSample 1

CART = 1− 8+29
40 = 3

40 = 0.075

Neural Networks Results:

Using the ’nnet’ function in R, the confusion matrix and misclassification rate obtained, using
two layers and 2 units in the hidden layer, are

(
10 0
3 27

)
, êcpSample 1

NN = 1− 10+27
40 = 3

40 = 0.075

Using the ’nnet’ function in R, the confusion matrix and misclassification rate obtained, using
two layers and 3 units in the hidden layer, are

(
8 2
7 23

)
, êcpSample 1

NN = 1− 8+23
40 = 9

40 = 0.225
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4 Conclusions and Further Research

4.1 Conclusions

Our main study area is corporate performance, focusing on the characterisation and prediction
of insolvency risk, which is a key point within it. By effectively predicting insolvency risk, two
objectives of corporate performance can be achieved, which are the diagnosis of the situation
of a firm in a specific moment of time and the answer to whether a firm is achieving its objec-
tives, specifically putting the emphasis on the possibility of occurrence of financial distress and
eventual failure.

The prediction of insolvency risk can be approached, for instance, from two different perspec-
tives: using the so-called Financial Statement Analysis (basically Financial and Accounting
Theory) or using Statistics. We have opted for using Financial and Accounting Theory only for
its characterisation, while we have made use of Statistics for its prediction, presenting a series
of appropriate statistical methods which prove to be reliable in the literature.

However, we have made it clear that there are connections between Accounting-Finance The-
ory and Statistical Theory, that it is quite pointless not to strike a balance between the two
subjects. The most evident reason is that Accounting and Finance Theory turns out to be
crucial in making the predictions, because it is through it that we justify the ratios selected as
predictors. It is therefore most likely that the deeper is our understanding of it, the better is
going to be the selection of ratios. In his 1968 article, E. I. Altman applied Linear Discriminant
Analysis carefully selecting the ratios, so we have also given such an importance.
In short, Accounting and Finance Theory provides the conceptual background in which justify
the results obtained with the methods.

We have based our analysis of insolvency risk in two linked legs, return and solvency. The main
conclusion is that return and solvency normally move in opposite directions. This means that,
in general, a firm earns high return rates at the expense of increasing its volume of debt, which
in turn increases its insolvency risk.

We have formally presented five statistical methods with which test our samples and evaluate
their prediction capability. The ordered misclassification rates obtained in 3.4, using Sample 1,
are the following:

Method Specification Misclassification Rate
NN 2 layers and 2 units in hidden layer 7.5%
CART Using entropy 7.5%
Log. Reg. Without using LOO 10%
CART Using Gini Impurity Measure 17.5%
Log. Reg. Using LOO 17.5%
KNN k = 3 20%
NN 2 layers and 3 units in hidden layer 22.5%
KNN k = 1 22.5%
LDA Using LOO 25%
KNN k = 2 27.5%

So, we can state that both Neural Networks and Classification and Regression Trees have the
greatest prediction capability among all the statistical methods which have been tested, taking
into account the specifications and the fact that these results might depend on the sample used.
More specifically, we have considered a multilayer perceptron with 2 layers and 2 units in the
hidden layer, and a Classification Tree using entropy as information measure.
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Looking at the order and the rates, we may affirm a couple of facts. In first place, that linear
methods such as LDA, not only are they simple but they also provide acceptable enough results.
In second place, that non-linear methods such as CART and NN are more complex but they
provide better prediction results.
This confirms what we would have expected at the beginning, that there is a trade-off between
complexity and prediction capability.
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4.2 Further Research

When determining the specific characteristics of Sample 1, there are some potentially arguable
aspects which could be analysed in further research.

We could ask themselves whether the seven ratios chosen as predictors are the best choice. Our
purpose is to achieve the greatest prediction capability and that very much depends on the
ratios used.
Our selection of ratios differs from that of Altman. Actually, we find numberless ratios in the
literature. What we do is to select a small set of ratios justified on accounting and financial
arguments so that they make sense. Although it is true that we have obtained good results
in terms of prediction capability, we could determine the relative importance of each ratio and
therefore decide if any change of variables would be useful. Or we could simply test other ratios
trying to be coherent with the same arguments.

It could also be interesting to study more sectors or different groups of firms, and compare the
results with those of Sample 1. What we do is to randomly choose firms from a specific sector
for this sample, but we could ask ourselves to what extent the results obtained will be similar in
other sectors. This involves choosing the most appropriate ratios in each case because it would
be reasonable to assume that different sectors require different ratios, or that some ratios are
better indicators only in some sectors.

Other considerations could be to examine the plausibility of the Case-Control relation, which
in our case is 1:3, and the size of the sample, namely the number of firms selected.

Another option after obtaining the results, which we find in Altman’s article, could be to repeat
them but now using data from a different year, not one year prior to the declaration but two
years prior, and then successively (three years prior,...), in order to assess how the prediction
capability evolves if we change the period.

In short, we basically propose to extend and enrich the Practical Framework by adding both
complements and alternatives to the way in which we proceeded.

On the other hand, the prediction capability also very much depends on the chosen method
to make the predictions (or to classify the observations). So, it is reasonable to ask ourselves
whether the five statistical methods chosen are the best choice.
Again, in 4.1 we corroborated the fact that these methods are reliable, but they are not the
only ones which deal with the Problem of Classification. Other methods are quoted in 2.1.2,
and through the references given we may find other examples.

In connection with the methods, there is the issue of how they are implemented in R. In
theory, there should not be any difference between the method itself and the internal code
implemented, but in some cases there is. For example, if we take LDA, the ’lda’ function
calculates the coefficients vector and then it normalises it (divides the vector by its Euclidean
norm). Although the effect of normalising the vector does not alter the results (the direction
stays the same), we should be aware of this additional step in the code.
Another case even more unsettling is when computing CART and NN, where ’rpart’ and ’nnet’
functions do not give enough information about how the methods are applied. In these two
cases, we must admit that we have not looked up the details in the code, and therefore we only
provide the final results without explaining the intermediate steps.

In conclusion, there is still a long way to go concerning the search for other appropriate statistical
methods for the Problem of Classification and for prediction purposes, in general. Besides,
whenever we test a method with an application (R in our case), we should not uncritically
accept the given output but ask for the most possible information.
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Appendices

A R Scripts

A.1 LDA Scripts

#
# Linear Discr iminant Ana lys i s (LDA)
#
# Sample : 40 f i rms (10 Fa i l ed and 30 Non−Fai l ed ) be long ing to the s e c t o r
# 01 . Crop and animal production , hunting and r e l a t e d s e r v i c e a c t i v i t i e s ( accord ing to
# NACE Rev . 2)
#
# Firms are e i t h e r SA or SL , i n d i s t i n c t l y
# Data from the 2007−2014 per iod ( yea r l y )
#

# Read data tab le , s t o r ed in ”TFG Observations . txt ” f o r example

f i rms<−read . t a b l e (” TFG Observations . txt ” , header=TRUE, row . names=1)

f i rms . f a i l e d<−f i rms [ f i rms$C la s s==”Fa i l ed ” ,−8]
f i rms . non . f a i l e d<−f i rms [ f i rms$C la s s==”Non−Fai l ed ” ,−8]

# Table d e t a i l s and d e s c r i p t i v e s t a t i s t i c s

s t r ( f i rms )

’ data . frame ’ : 40 obs . o f 8 v a r i a b l e s :
$ Ratio1 : num 0.131 0 .68 0 .548 0 .057 0 .165 . . .
$ Ratio2 : num 0.755 5 .976 2 .683 0 .55 0 .434 . . .
$ Ratio3 : num −0.0897 6 .2481 2 .3175 2 .1259 −0.0872 . . .
$ Ratio4 : num −1.6901 0.04801 0.02515 0.00211 2.03401 . . .
$ Ratio5 : num −0.1603 0 .0354 0 .0178 0 .0111 −0.0389 . . .
$ Ratio6 : num 151.14 73 .23 588 .82 54 .67 5 .21 . . .
$ Ratio7 : num 67 .7 13 .3 177 .4 202 .8 28 .1 . . .
$ Class : Factor w/ 2 l e v e l s ” Fa i l ed ” ,”Non−Fai l ed ” : 1 2 2 2 1 2 2 2 1 2 . . .

names ( f i rms )

[ 1 ] ” Ratio1 ” ” Ratio2 ” ” Ratio3 ” ” Ratio4 ” ” Ratio5 ” ” Ratio6 ” ” Ratio7 ” ” Class ”

s t r ( f i rms . f a i l e d )

’ data . frame ’ : 10 obs . o f 7 v a r i a b l e s :
$ Ratio1 : num 0.1314 0 .1655 0 .0105 0 .0845 0 .1434 . . .
$ Ratio2 : num 0.755 0 .434 0 .019 0 .158 0 .431 . . .
$ Ratio3 : num −0.0897 −0.0872 0 .2848 0 .2133 1 .3827 . . .
$ Ratio4 : num −1.6901 2.03401 0.02549 −0.0617 −0.00153 . . .
$ Ratio5 : num −0.1603 −0.0389 0 .0124 −0.0757 −0.0153 . . .
$ Ratio6 : num 151.14 5 .21 383 .2 67 .61 110 .99 . . .
$ Ratio7 : num 67 .7 28 .1 794 238 .1 230 .5 . . .

s t r ( f i rms . non . f a i l e d )

’ data . frame ’ : 30 obs . o f 7 v a r i a b l e s :
$ Ratio1 : num 0.68 0 .548 0 .057 0 .48 0 .227 . . .
$ Ratio2 : num 5.98 2 .68 0 .55 1 .43 1 .27 . . .
$ Ratio3 : num 6.25 2 .32 2 .13 1 .21 3 .29 . . .
$ Ratio4 : num 0.04801 0.02515 0.00211 −0.11028 0.05752 . . .
$ Ratio5 : num 0.0354 0 .0178 0 .0111 −0.0547 0 .0633 . . .
$ Ratio6 : num 73 .2 588 .8 54 .7 277 .4 43 .5 . . .
$ Ratio7 : num 13 .3 177 .4 202 .8 757 50 .3 . . .
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summary( f i rms )

Ratio1 Ratio2 Ratio3 Ratio4
Min . : 0 . 01051 Min . : 0 .01901 Min . :−0.3294 Min . :−2.528084
1 s t Qu. : 0 . 0 8 3 8 5 1 s t Qu . : 0 .27187 1 s t Qu . : 0 .1079 1 s t Qu. :−0.062512
Median : 0 . 15029 Median : 0 .75076 Median : 0 .4476 Median : 0 .004135
Mean : 0 . 23450 Mean : 1 .58234 Mean : 2 .8446 Mean : 0 .090600
3 rd Qu. : 0 . 3 7 6 7 4 3 rd Qu . : 1 .30391 3 rd Qu . : 2 .1738 3 rd Qu . : 0 .076268
Max. : 0 . 68018 Max. : 10 . 72871 Max. : 37 . 1129 Max. : 6 .197973

Ratio5 Ratio6 Ratio7 Class
Min . :−0.2662416 Min . :−317.29 Min . : 7 .14 Fa i l ed :10
1 s t Qu. :−0.0200257 1 s t Qu . : 42 .95 1 s t Qu . : 33 .97 Non−Fai l ed :30
Median : 0 .0182522 Median : 77 .63 Median : 83 .73
Mean : 0 .0007162 Mean : 196 .04 Mean : 197 .91
3 rd Qu . : 0 .0392552 3 rd Qu . : 156 .23 3 rd Qu . : 232 .37
Max. : 0 .0886270 Max. : 3346 . 04 Max. : 1186 . 19

summary( f i rms . f a i l e d )

Ratio1 Ratio2 Ratio3 Ratio4
Min . : 0 . 01051 Min . : 0 . 01901 Min . :−0.32942 Min . :−1.69010
1 s t Qu. : 0 . 0 6 1 1 6 1 s t Qu. : 0 . 1 5 1 6 8 1 s t Qu. :−0.05306 1 s t Qu. :−0.09581
Median : 0 . 12376 Median : 0 . 22810 Median : 0 .15459 Median :−0.03524
Mean : 0 . 12724 Mean : 0 . 36280 Mean : 0 .21331 Mean : 0 .46977
3 rd Qu. : 0 . 1 5 3 7 5 3 rd Qu. : 0 . 4 3 3 0 0 3 rd Qu . : 0 .26694 3 rd Qu . : 0 .01874
Max. : 0 . 36425 Max. : 1 . 10630 Max. : 1 .38270 Max. : 6 .19797

Ratio5 Ratio6 Ratio7
Min . :−0.26624 Min . : 3 .176 Min . : 27 .18
1 s t Qu. :−0.06995 1 s t Qu . : 69 .768 1 s t Qu . : 63 .48
Median :−0.03613 Median : 125 . 428 Median : 2 3 4 . 2 9
Mean :−0.06281 Mean : 139 . 507 Mean : 2 4 0 . 1 3
3 rd Qu. :−0.01608 3 rd Qu. : 1 4 8 . 9 6 1 3 rd Qu. : 3 1 5 . 1 5
Max. : 0 .02031 Max. : 383 . 200 Max. : 7 9 3 . 9 5

summary( f i rms . non . f a i l e d )

Ratio1 Ratio2 Ratio3 Ratio4
Min . : 0 . 02010 Min . : 0 .1153 Min . :−0.1752 Min . :−2.52808
1 s t Qu. : 0 . 0 8 9 7 2 1 s t Qu . : 0 .5421 1 s t Qu . : 0 .2127 1 s t Qu. :−0.02077
Median : 0 . 25772 Median : 0 .9459 Median : 1 .2444 Median : 0 .02601
Mean : 0 . 27026 Mean : 1 .9889 Mean : 3 .7217 Mean :−0.03579
3 rd Qu. : 0 . 4 1 4 7 8 3 rd Qu . : 1 .5296 3 rd Qu . : 2 .8467 3 rd Qu . : 0 .07636
Max. : 0 . 68018 Max. : 10 . 7287 Max. : 37 . 1129 Max. : 1 .07696

Ratio5 Ratio6 Ratio7
Min . :−0.13056 Min . :−317.29 Min . : 7 .14
1 s t Qu . : 0 .01021 1 s t Qu . : 41 .85 1 s t Qu . : 28 .33
Median : 0 .02818 Median : 69 .79 Median : 77 .72
Mean : 0 .02189 Mean : 214 .89 Mean : 183 .84
3 rd Qu . : 0 .04603 3 rd Qu . : 158 .54 3 rd Qu . : 190 .64
Max. : 0 .08863 Max. : 3346 . 04 Max. : 1186 . 19

# Observation matrix (X) , Centered matrix (X0) , Covariance matrix (S) and Cor r e l a t i on
# matrix (R)

f i rms . obs<−f i rms [ ,− c ( 8 ) ]
X<−as . matrix ( f i rms . obs )
X0<−s c a l e (X, s c a l e=FALSE)
S<−cov ( f i rms . obs )
R<−cor ( f i rms . obs )

# In order to see i f the r e e x i s t s any c o r r e l a t i o n between r a t i o s , we f i r s t compute
# c o r r e l a t i o n matr i ce s f o r the two groups

R. f<−cor ( f i rms . f a i l e d )
R. nf<−cor ( f i rms . non . f a i l e d )
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round (R. f , 2 )

Ratio1 Ratio2 Ratio3 Ratio4 Ratio5 Ratio6 Ratio7
Ratio1 1 .00 0 .88 −0.02 −0.21 −0.04 −0.35 −0.15
Ratio2 0 .88 1 .00 0 .01 −0.25 −0.05 −0.37 −0.19
Ratio3 −0.02 0 .01 1 .00 −0.02 0 .56 −0.19 0 .22
Ratio4 −0.21 −0.25 −0.02 1 .00 0 .34 −0.22 0 .04
Ratio5 −0.04 −0.05 0 .56 0 .34 1 .00 −0.36 0 .49
Ratio6 −0.35 −0.37 −0.19 −0.22 −0.36 1 .00 0 .55
Ratio7 −0.15 −0.19 0 .22 0 .04 0 .49 0 .55 1 .00

round (R. nf , 2 )

Ratio1 Ratio2 Ratio3 Ratio4 Ratio5 Ratio6 Ratio7
Ratio1 1 .00 0 .46 0 .07 0 .01 0 .03 0 .23 0 .02
Ratio2 0 .46 1 .00 0 .81 0 .16 0 .26 0 .00 0 .16
Ratio3 0 .07 0 .81 1 .00 0 .14 0 .18 −0.05 0 .21
Ratio4 0 .01 0 .16 0 .14 1 .00 0 .16 −0.01 −0.20
Ratio5 0 .03 0 .26 0 .18 0 .16 1 .00 −0.06 −0.26
Ratio6 0 .23 0 .00 −0.05 −0.01 −0.06 1 .00 0 .15
Ratio7 0 .02 0 .16 0 .21 −0.20 −0.26 0 .15 1 .00

# An a u x i l i a r y func t i on to compute the rank o f a matrix

mrank<−f unc t i on ( a , eps =1.0e−5){
s<−svd ( a )
r<−sum( s$d>eps )
re turn ( r )
}

# Compute ranks o f both c o r r e l a t i o n matr i ce s (R. f and R. nf )

mrank (R. f , eps =1.e−3)
[ 1 ] 7

mrank (R. f , eps =1.e−4)
[ 1 ] 7

mrank (R. nf , eps =1.e−4)
[ 1 ] 7

mrank (R. nf , eps =1.e−3)
[ 1 ] 7

# Resu l t s show that both matr i ce s have maximum rank , meaning that in theory the re are no
# p a i r s o f r a t i o s p e r f e c t l y c o r r e l a t e d .
# Al t e rna t i v e l y , we compute cond i t i on numbers to obta in a s i m i l a r r e s u l t .

kappa (R. f )
[ 1 ] 78 .96666

kappa (R. nf )
[ 1 ] 24 .71842

# A d e s c r i p t i o n o f c o r r e l a t i o n s by group

V. f<−R. f [ lower . t r i (R. f ) ]
V. nf<−R. nf [ lower . t r i (R. nf ) ]

h i s t (V. f , n c l a s s =8)
h i s t (V. nf , n c l a s s =8)

# Apply LDA without func t i on ’ lda ’ d i r e c t l y
# So , c a l c u l a t e d i f f e r e n c e o f sample means and sample covar iance matrix , e t c

m. f<−apply ( f i rms . f a i l e d , 2 , mean)
m. nf<−apply ( f i rms . non . f a i l e d , 2 , mean)
d<−m. f−m. nf

S . f<−cov ( f i rms . f a i l e d )
S . nf<−cov ( f i rms . non . f a i l e d )

n1<−nrow ( f i rms . f a i l e d )
n2<−nrow ( f i rms . non . f a i l e d )
n<−n1+n2

W. f<−(n1−1)∗S . f

52



W. nf<−(n2−1)∗S . nf
W<−W. f+W. nf
S<−(1/(n−2))∗W

S1<−s o l v e (S)

L<−S1%∗%d
L . norm<−L/L [ 7 ]
L . norm

[ , 1 ]
Ratio1 −4.345902 e+03
Ratio2 2.421489 e+02
Ratio3 −1.072329 e+02
Ratio4 5.915756 e+02
Ratio5 −2.459089 e+04
Ratio6 −1.983339e−01
Ratio7 1.000000 e+00

# Apply LDA with func t i on ’ lda ’ d i r e c t l y , us ing Leave−one−out (LOO) technique

r e q u i r e (MASS)

f i rms . lda .1<− lda ( Class ˜ . , data=f i rms ,CV=TRUE)

# Using LOO, R does not prov ide the c o e f f i c i e n t s . I f we e x p l i c i t l y want them ,
# we must apply LDA without us ing LOO

f i rms . lda .2<− lda ( Class ˜ . , data=f i rms ,CV=FALSE)

C o e f f i c i e n t s o f l i n e a r d i s c r i m i n a n t s :
LD1

Ratio1 2.762364153
Ratio2 −0.153915869
Ratio3 0.068159897
Ratio4 −0.376020250
Ratio5 15.630587085
Ratio6 0.000126066
Ratio7 −0.000635625

# Normal is ing the vec to r by Ratio7 , we obta in the same c o e f f i c i e n t s

# We compute Confusion matrix and determine the e r r o r s to a s s e s s LDA performance us ing LOO

Observed<−f i rms$C la s s
n<−l ength ( Observed )
n
[ 1 ] 40

Predicted<−rep (”Non−Fai l ed ” ,n)
Pred ic ted [ f i rms . lda . 1 $ p o s t e r i o r [1 ,]>0.5]<−” Fa i l ed ”

Confusion . matrix . lda .1<− t ab l e ( Observed , Pred ic ted )
Confusion . matrix . lda . 1

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 10 0
Non−Fai l ed 10 20

Err1<−Confusion . matrix . lda . 1 [ 1 , 2 ] / sum( Confusion . matrix . lda . 1 [ 1 , ] )
Err1

[ 1 ] 0
Err2<−Confusion . matrix . lda . 1 [ 2 , 1 ] / sum( Confusion . matrix . lda . 1 [ 2 , ] )
Err2

[ 1 ] 0 .3333333
Overa l l . Err<−1−sum( diag ( Confusion . matrix . lda . 1 ) ) / sum( Confusion . matrix . lda . 1 )
Overa l l . Err

[ 1 ] 0 .25
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#
# Linear Discr iminant Ana lys i s (LDA)
#
# Sample : 66 American manufacturing f i rms (33 Bankrupt and 33 Solvent )
#
# Data from the 1945−1965 per iod ( yea r l y )
#

# Read data tab le , s t o r ed in ”Altman . data . txt ” f o r example

altman . f i rms<−read . t a b l e (” Altman . data . txt ” , header=TRUE, row . names=1)

altman . f i rms . b<−altman . f i rms [ altman . f i rms$C la s s==”B”,−c ( 1 ) ]
altman . f i rms . s<−altman . f i rms [ altman . f i rms$C la s s==”S”,−c ( 1 ) ]

# Table d e t a i l s and d e s c r i p t i v e s t a t i s t i c s

s t r ( altman . f i rms )

’ data . frame ’ : 66 obs . o f 6 v a r i a b l e s :
$ Class : Factor w/ 2 l e v e l s ”B” ,”S ” : 1 1 1 1 1 1 1 1 1 1 . . .
$ X1 : num 36 .7 24 −61.6 −1 18 .9 −57.2 3 −5.1 17 .9 5 .4 . . .
$ X2 : num −62.8 3 .3 −120.8 −18.1 −3.8 . . .
$ X3 : num −89.5 −3.5 −103.2 −28.8 −50.6 . . .
$ X4 : num 54 .1 20 .9 24 .7 36 .2 26 .4 11 8 6 .5 22 .6 23 .8 . . .
$ X5 : num 1 .7 1 .1 2 .5 1 .1 0 .9 1 .7 1 0 .5 1 1 .5 . . .

names ( altman . f i rms )

[ 1 ] ” Class ” ”X1” ”X2” ”X3” ”X4” ”X5”

s t r ( altman . f i rms . b)

’ data . frame ’ : 33 obs . o f 5 v a r i a b l e s :
$ X1 : num 36 .7 24 −61.6 −1 18 .9 −57.2 3 −5.1 17 .9 5 .4 . . .
$ X2 : num −62.8 3 .3 −120.8 −18.1 −3.8 . . .
$ X3 : num −89.5 −3.5 −103.2 −28.8 −50.6 . . .
$ X4 : num 54 .1 20 .9 24 .7 36 .2 26 .4 11 8 6 .5 22 .6 23 .8 . . .
$ X5 : num 1 .7 1 .1 2 .5 1 .1 0 .9 1 .7 1 0 .5 1 1 .5 . . .

s t r ( altman . f i rms . s )

’ data . frame ’ : 33 obs . o f 5 v a r i a b l e s :
$ X1 : num 35 .2 38 .8 14 55 .1 59 .3 33 .6 52 .8 45 .6 47 .4 40 . . .
$ X2 : num 43 47 −3.3 35 46 .7 20 .8 33 26 .1 68 .6 37 .3 . . .
$ X3 : num 16 .4 16 4 20 .8 12 .6 12 .5 23 .6 10 .4 13 .8 33 .4 . . .
$ X4 : num 99 .1 126 .5 91 .7 72 .3 724 .1 . . .
$ X5 : num 1 .3 1 .9 2 .7 1 .9 0 .9 2 .4 1 .5 2 .1 1 .6 3 .5 . . .

summary( altman . f i rms )

Class X1 X2 X3
B:33 Min . :−185.100 Min . :−308.90 Min . :−280.000
S :33 1 s t Qu . : 5 .175 1 s t Qu . : −39.05 1 s t Qu . : −17.675

Median : 24 .550 Median : 7 .85 Median : 4 .100
Mean : 17 .669 Mean : −13.63 Mean : −8.226
3 rd Qu . : 45 .975 3 rd Qu . : 35 .75 3 rd Qu . : 14 .400
Max. : 72 .400 Max. : 68 .60 Max . : 34 .100

X4 X5
Min . : 0 .70 Min . : 0 . 1 0 0
1 s t Qu . : 21 .93 1 s t Qu. : 1 . 0 2 5
Median : 86 .00 Median : 1 . 5 5 0
Mean : 1 4 7 . 3 5 Mean : 1 . 7 2 1
3 rd Qu. : 2 1 4 . 0 0 3 rd Qu. : 1 . 9 7 5
Max. : 7 7 1 . 7 0 Max. : 6 . 7 0 0

summary( altman . f i rms . b)
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X1 X2 X3 X4
Min . :−185.100 Min . :−308.90 Min . :−280.00 Min . : 0 .70
1 s t Qu . : −17.200 1 s t Qu . : −98.00 1 s t Qu . : −35.70 1 s t Qu . : 11 .00
Median : 5 .100 Median : −39.40 Median : −17.70 Median : 21 .70
Mean : −6.047 Mean : −62.51 Mean : −31.77 Mean : 40 .05
3 rd Qu . : 18 .900 3 rd Qu . : −13.10 3 rd Qu . : −6.50 3 rd Qu . : 35 .70
Max. : 72 .400 Max. : 20 .80 Max. : 6 .80 Max. : 2 6 7 . 9 0

X5
Min . : 0 . 1 0 0
1 s t Qu. : 0 . 9 0 0
Median : 1 . 2 0 0
Mean : 1 . 5 0 3
3 rd Qu. : 1 . 7 0 0
Max. : 6 . 7 0 0

summary( altman . f i rms . s )

X1 X2 X3 X4
Min . : 1 4 . 0 0 Min . :−3.30 Min . :−14.40 Min . : 53 .4
1 s t Qu. : 3 3 . 8 0 1 s t Qu. : 2 1 . 5 0 1 s t Qu . : 7 .10 1 s t Qu. : 1 0 5 . 6
Median : 4 5 . 6 0 Median : 3 5 . 9 0 Median : 14 .60 Median : 1 6 4 . 4
Mean : 4 1 . 3 8 Mean : 3 5 . 2 5 Mean : 15 .32 Mean : 2 5 4 . 7
3 rd Qu. : 5 2 . 8 0 3 rd Qu. : 4 7 . 0 0 3 rd Qu . : 23 .60 3 rd Qu. : 3 0 7 . 5
Max. : 6 9 . 0 0 Max. : 6 8 . 6 0 Max. : 34 .10 Max . : 7 7 1 . 7

X5
Min . : 0 . 9 0 0
1 s t Qu. : 1 . 5 0 0
Median : 1 . 8 0 0
Mean : 1 . 9 3 9
3 rd Qu. : 2 . 0 0 0
Max. : 5 . 5 0 0

# Observation matrix (X) , Centered matrix (X0) , Covariance matrix (S) and Cor r e l a t i on
# matrix (R)

altman . f i rms . obs<−altman . f i rms [ ,− c ( 1 ) ]
altman .X<−as . matrix ( altman . f i rms . obs )
altman . X0<−s c a l e ( atman .X, s c a l e=FALSE)
altman . S<−cov ( altman . f i rms . obs )
altman .R<−cor ( altman . f i rms . obs )

# In order to see i f the r e e x i s t s any c o r r e l a t i o n between r a t i o s , we f i r s t compute
# c o r r e l a t i o n matr i ce s f o r the two groups

altman .R. b<−cor ( altman . f i rms . b)
altman .R. s<−cor ( altman . f i rms . s )

round ( altman .R. b , 2 )

X1 X2 X3 X4 X5
X1 1 .00 0 .60 −0.13 0 .12 0 .33
X2 0 .60 1 .00 0 .45 0 .05 −0.19
X3 −0.13 0 .45 1 .00 0 .06 −0.78
X4 0 .12 0 .05 0 .06 1 .00 0 .03
X5 0 .33 −0.19 −0.78 0 .03 1 .00

round ( altman .R. s , 2 )

X1 X2 X3 X4 X5
X1 1 .00 0 .50 0 .11 0 .33 0 .15
X2 0 .50 1 .00 0 .29 0 .48 0 .06
X3 0 .11 0 .29 1 .00 0 .36 0 .27
X4 0 .33 0 .48 0 .36 1 .00 −0.08
X5 0 .15 0 .06 0 .27 −0.08 1 .00

# An a u x i l i a r y func t i on to compute the rank o f a matrix

mrank<−f unc t i on ( a , eps =1.0e−5){
s<−svd ( a )
r<−sum( s$d>eps )
re turn ( r )
}

55



# Compute ranks o f both c o r r e l a t i o n matr i ce s ( altman .R. b and altman .R. s )

mrank ( altman .R. b , eps =1.e−3)
[ 1 ] 5

mrank ( altman .R. b , eps =1.e−4)
[ 1 ] 5

mrank ( altman .R. s , eps =1.e−4)
[ 1 ] 5

mrank ( altman .R. s , eps =1.e−3)
[ 1 ] 5

# Resu l t s show that both matr i ce s have maximum rank , meaning that in theory the re are no
# p a i r s o f r a t i o s p e r f e c t l y c o r r e l a t e d .
# Al t e rna t i v e l y , we compute cond i t i on numbers to obta in a s i m i l a r r e s u l t .

kappa ( altman .R. b)
[ 1 ] 16 .25495

kappa ( altman .R. s )
[ 1 ] 6 .016638

# A d e s c r i p t i o n o f c o r r e l a t i o n s by group

altman .V. b<−altman .R. b [ lower . t r i ( altman .R. b ) ]
altman .V. s<−altman .R. s [ lower . t r i ( altman .R. s ) ]

h i s t ( altman .V. b , n c l a s s =8)
h i s t ( altman .V. nf , n c l a s s =8)

# Apply LDA without func t i on ’ lda ’ d i r e c t l y
# So , c a l c u l a t e d i f f e r e n c e o f sample means and sample covar iance matrix , e t c

m. b<−apply ( altman . f i rms . b , 2 , mean)
m. s<−apply ( altman . f i rms . s , 2 , mean)
d<−m. b−m. s

S . b<−cov ( altman . f i rms . b)
S . s<−cov ( altman . f i rms . s )

n1<−nrow ( altman . f i rms . b)
n2<−nrow ( altman . f i rms . s )
n<−n1+n2

S<−(S . b+S . s )/2

S1<−s o l v e (S)

L<−S1%∗%d
L . norm<−L/L [ 5 ]
round (L . norm , 3 )

[ , 1 ]
X1 0 .012
X2 0.015
X3 0.033
X4 0.006
X5 1.000

# Apply LDA with func t i on ’ lda ’ d i r e c t l y , us ing Leave−one−out (LOO) technique

r e q u i r e (MASS)

altman . f i rms . lda .1<− lda ( Class ˜ . , data=altman . f i rms ,CV=TRUE)

# Using LOO, R does not prov ide the c o e f f i c i e n t s . I f we e x p l i c i t l y want them ,
# we must apply LDA without us ing LOO

altman . f i rms . lda .2<− lda ( Class ˜ . , data=altman . f i rms ,CV=FALSE)
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C o e f f i c i e n t s o f l i n e a r d i s c r i m i n a n t s :
LD1

X1 0.005948816
X2 0.007063952
X3 0.016180383
X4 0.002977887
X5 0.485106138

# Normal is ing the vec to r by X5 , we obta in the same c o e f f i c i e n t s

# We compute Confusion matrix and determine the e r r o r s to a s s e s s LDA performance us ing LOO

altman . Observed<−altman . f i rms$C la s s
altman . n<−l ength ( altman . Observed )
altman . n
[ 1 ] 66
altman . Predicted<−rep (”S” , altman . n)
altman . Pred ic ted [ altman . f i rms . lda . 1 $ p o s t e r i o r [1 ,]>0.5]<−”B”

altman . Confusion . matrix . lda .1<− t ab l e ( altman . Observed , altman . Pred ic ted )
altman . Confusion . matrix . lda . 1

altman . Pred ic ted
altman . Observed B S

B 17 16
S 16 17

altman . Err1<−altman . Confusion . matrix . lda . 1 [ 1 , 2 ] / sum( altman . Confusion . matrix . lda . 1 [ 1 , ] )
altman . Err1

[ 1 ] 0 .4848485
altman . Err2<−altman . Confusion . matrix . lda . 1 [ 2 , 1 ] / sum( altman . Confusion . matrix . lda . 1 [ 2 , ] )
altman . Err2

[ 1 ] 0 .4848485
altman . Overa l l . Err<−1−sum( diag ( altman . Confusion . matrix . lda . 1 ) ) / sum( altman . Confusion . matrix . lda . 1 )
altman . Overa l l . Err

[ 1 ] 0 .4848485
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A.2 Logistic Regression Script

# L o g i s t i c Regres s ion
#
# Sample : 40 f i rms (10 Fa i l ed and 30 Non−Fai l ed ) be long ing to the s e c t o r
# 01 . Crop and animal production , hunting and r e l a t e d s e r v i c e a c t i v i t i e s ( accord ing to
# NACE Rev . 2)
#
# Firms are e i t h e r SA or SL , i n d i s t i n c t l y
# Data from the 2007−2014 per iod ( yea r l y )
#

# Read data tab le , s t o r ed in ”TFG Observations . txt ” f o r example

f i rms<−read . t a b l e (” TFG Observations . txt ” , header=TRUE, row . names=1)

# Fit a L o g i s t i c Regres s ion model . See ’TFG.LDA. r ’ f o r any prev ious d e t a i l s

y<−( f i rms$C la s s==”Fa i l ed ”)∗1
f irmsn<−data . frame ( cbind ( f i rms [ , −8 ] , y ) )

f i rmsn . glm1<−glm ( y ˜ . , f ami ly=binomial ( l i n k=l o g i t ) , data=f i rmsn )
summary( f i rmsn . glm1 )

Ca l l :
glm ( formula = y ˜ . , f ami ly = binomial ( l i n k = l o g i t ) , data = f i rmsn )

Deviance Res idua l s :
Min 1Q Median 3Q Max

−1.40810 −0.37743 −0.07248 0.00528 2.13028

C o e f f i c i e n t s :
Estimate Std . Error z va lue Pr(>| z | )

( I n t e r c e p t ) 0 .580475 1.235284 0 .470 0 .6384
Ratio1 −8.844292 6.606646 −1.339 0 .1807
Ratio2 −0.784971 1.891081 −0.415 0 .6781
Ratio3 −2.085571 1.254793 −1.662 0 .0965 .
Ratio4 0.912546 1.250231 0 .730 0 .4655
Ratio5 −25.682263 15.232543 −1.686 0 .0918 .
Ratio6 0.000367 0.004273 0 .086 0 .9316
Ratio7 0.005717 0.003862 1 .480 0 .1388
−−−

S i g n i f . codes : 0 ?∗∗∗? 0 .001 ?∗∗? 0 .01 ?∗? 0 .05 ? . ? 0 .1 ? ? 1

( D i spe r s i on parameter f o r binomial fami ly taken to be 1)

Nul l dev iance : 44 .987 on 39 degree s o f freedom
Res idua l dev iance : 18 .607 on 32 degree s o f freedom
AIC : 34 .607

Number o f F i sher Scor ing i t e r a t i o n s : 9

# Stepwise p r e d i c t o r s e l e c t i o n i n v o l v i n g Akaike ’ s In format ion Criter ium (AIC)

step ( f i rmsn . glm1 )

Sta r t : AIC=34.61
y ˜ Ratio1 + Ratio2 + Ratio3 + Ratio4 + Ratio5 + Ratio6 + Ratio7

Df Deviance AIC
− Ratio6 1 18 .614 32 .614
− Ratio2 1 18 .786 32 .786
− Ratio4 1 19 .416 33 .416
<none> 18 .607 34 .607
− Ratio1 1 20 .782 34 .782
− Ratio7 1 21 .553 35 .553
− Ratio3 1 23 .115 37 .115
− Ratio5 1 23 .675 37 .675

Step : AIC=32.61
y ˜ Ratio1 + Ratio2 + Ratio3 + Ratio4 + Ratio5 + Ratio7

58



Df Deviance AIC
− Ratio2 1 18 .786 30 .786
− Ratio4 1 19 .416 31 .416
<none> 18 .614 32 .614
− Ratio1 1 20 .783 32 .783
− Ratio7 1 21 .808 33 .808
− Ratio3 1 23 .327 35 .327
− Ratio5 1 23 .700 35 .700

Step : AIC=30.79
y ˜ Ratio1 + Ratio3 + Ratio4 + Ratio5 + Ratio7

Df Deviance AIC
− Ratio4 1 19 .781 29 .781
<none> 18 .786 30 .786
− Ratio7 1 22 .938 32 .938
− Ratio1 1 24 .320 34 .320
− Ratio3 1 24 .323 34 .323
− Ratio5 1 24 .633 34 .633

Step : AIC=29.78
y ˜ Ratio1 + Ratio3 + Ratio5 + Ratio7

Df Deviance AIC
<none> 19 .781 29 .781
− Ratio7 1 23 .747 31 .747
− Ratio5 1 24 .714 32 .714
− Ratio1 1 25 .825 33 .825
− Ratio3 1 27 .373 35 .373

Cal l : glm ( formula = y ˜ Ratio1 + Ratio3 + Ratio5 + Ratio7 , fami ly = binomial ( l i n k = l o g i t ) ,
data = f i rmsn )

C o e f f i c i e n t s :
( I n t e r c e p t ) Ratio1 Ratio3 Ratio5 Ratio7

0.611688 −10.575905 −2.449561 −26.579763 0.006001

Degrees o f Freedom : 39 Total ( i . e . Nul l ) ; 35 Res idua l
Nul l Deviance : 44 .99
Res idua l Deviance : 19 .78 AIC : 29 .78
There were 21 warnings ( use warnings ( ) to see them )

# Now we can f i t the d e f i n i t i v e r e s u l t i n g model . Note that Ratio2 , Ratio4 and Ratio6
# have been removed

f i rmsn . glm2<−glm ( y ˜ Ratio1 + Ratio3 + Ratio5 + Ratio7 , fami ly=binomial ( l i n k=l o g i t ) , data=f i rmsn )
summary( f i rmsn . glm2 )

Ca l l :
glm ( formula = y ˜ Ratio1 + Ratio3 + Ratio5 + Ratio7 , fami ly = binomial ( l i n k = l o g i t ) ,

data = f i rmsn )

Deviance Res idua l s :
Min 1Q Median 3Q Max

−1.21120 −0.40097 −0.06567 0.00861 2.27194

C o e f f i c i e n t s :
Estimate Std . Error z va lue Pr(>| z | )

( I n t e r c e p t ) 0 .611688 1.046888 0 .584 0 .5590
Ratio1 −10.575905 5.755136 −1.838 0 .0661 .
Ratio3 −2.449561 1.265132 −1.936 0 .0528 .
Ratio5 −26.579763 16.357801 −1.625 0 .1042
Ratio7 0.006001 0.003774 1 .590 0 .1118
−−−

S i g n i f . codes : 0 ?∗∗∗? 0 .001 ?∗∗? 0 .01 ?∗? 0 .05 ? . ? 0 .1 ? ? 1

( D i spe r s i on parameter f o r binomial fami ly taken to be 1)

Nul l dev iance : 44 .987 on 39 degree s o f freedom
Res idua l dev iance : 19 .781 on 35 degree s o f freedom
AIC : 29 .781

Number o f F i sher Scor ing i t e r a t i o n s : 9
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# Confusion matrix ( with plug−in p r e d i c t i o n s )

f i rmsn . noc la s s<−f i rmsn [ ,−8]
f i rmsn . glm2 . pred<−p r e d i c t ( f i rmsn . glm2 , newdata=f i rmsn . noc la s s , type=”response ”)

Observed<−f i rms$C la s s
n<−l ength ( Observed )
Predicted<−rep (”Non−Fai l ed ” ,n)
Pred ic ted [ f i rmsn . glm2 . pred>0.5]<−” Fa i l ed ”

Confusion . matrix . glm2<−t ab l e ( Observed , Pred ic ted )
Confusion . matrix . glm2

Pred ic ted
Observed Fa i l ed Non−Fai l ed
Fa i l ed 7 3
Non−Fai l ed 1 29

# An a u x i l i a r y func t i on to compute m i s c l a s s i f i c a t i o n e r r o r s from a [ 2 , 2 ] con fu s i on matrix

m i s c l a s s i f i c a t i o n . e r r o r s<−f unc t i on (T){
Err1<−T[ 1 , 2 ] / sum(T[ 1 , ] )
Err2<−T[ 2 , 1 ] / sum(T[ 2 , ] )
Overa l l . Err<−1−sum( diag (T) )/ sum(T)
return ( l i s t ( Err1=Err1 , Err2=Err2 , Overa l l . Err=Overa l l . Err ) )
}

# And another smal l one f o r s y n t a c t i c purposes

round2<−f unc t i on ( x ){ round (x , 2 )}

# We determine the e r r o r s to a s s e s s L o g i s t i c Regres s ion performance on t h i s s p e c i f i c
# datase t

L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . glm2 )
lapp ly (L , round2 )

$Err1
[ 1 ] 0 . 3

$Err2
[ 1 ] 0 .03

$Overa l l . Err
[ 1 ] 0 . 1

# Fina l ly , we compute Confusion matrix and e r r o r s ( m i s c l a s s i f i c a t i o n ra t e ) again us ing
# Leave−One−Out method

Observed<−f i rms$C la s s
n<−l ength ( Observed )

Predicted<−rep (”Non−Fai l ed ” ,n)

f o r ( i in 1 : n){
Train . i<−f i rmsn [− i , ]
Test . i<−f i rmsn [ i ,−8]
Model . i<−glm ( y ˜ Ratio1 + Ratio3 + Ratio5 + Ratio7 , fami ly=binomial ( l i n k=l o g i t ) , data=Train . i )
Pred . i<−p r e d i c t ( Model . i , newdata=Test . i , type=”response ”)
i f ( Pred . i >0.5) Pred ic ted [ i ]<− ” Fa i l ed ”

}

Confusion . matrix . glm2 .LOO<−t ab l e ( Observed , Pred ic ted )
Confusion . matrix . glm2 .LOO

Pred icted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 6 4
Non−Fai l ed 3 27

L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . glm2 .LOO)
lapp ly (L , round2 )
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$Err1
[ 1 ] 0 . 4

$Err2
[ 1 ] 0 . 1

$Overa l l . Err
[ 1 ] 0 .18

61



A.3 KNN Script

#
# k−Nearest Neighbours (KNN)
#
# Sample : 40 f i rms (10 Fa i l ed and 30 Non−Fai l ed ) be long ing to the s e c t o r
# 01 . Crop and animal production , hunting and r e l a t e d s e r v i c e a c t i v i t i e s ( accord ing to
# NACE Rev . 2)
#
# Firms are e i t h e r SA or SL , i n d i s t i n c t l y
# Data from the 2007−2014 per iod ( yea r l y )
#

# Read data tab le , s t o r ed in ”TFG Observations . txt ” f o r example . See ’TFG.LDA. r ’ f o r
# any prev ious d e t a i l s

f i rms<−read . t a b l e (” TFG Observations . txt ” , header=TRUE, row . names=1)

f i rms . f a i l e d<−f i rms [ f i rms$C la s s==”Fa i l ed ” ,−8]
f i rms . non . f a i l e d<−f i rms [ f i rms$C la s s==”Non−Fai l ed ” ,−8]

# An a u x i l i a r y func t i on to compute m i s c l a s s i f i c a t i o n e r r o r s from a [ 2 , 2 ] con fu s i on matrix

m i s c l a s s i f i c a t i o n . e r r o r s<−f unc t i on (T){
Err1<−T[ 1 , 2 ] / sum(T[ 1 , ] )
Err2<−T[ 2 , 1 ] / sum(T[ 2 , ] )
Overa l l . Err<−1−sum( diag (T) )/ sum(T)
return ( l i s t ( Err1=Err1 , Err2=Err2 , Overa l l . Err=Overa l l . Err ) )
}

# And another smal l one f o r s y n t a c t i c purposes

round2<−f unc t i on ( x ){ round (x , 2 )}

# C l a s s i f y us ing k−Nearest Neighbours and LOO with k = 1

r e q u i r e ( c l a s s )

X<−f i rms [ , 1 : 7 ]
y<−f i rms$C la s s

Observed<−f i rms$C la s s
n<−l ength ( Observed )
n

[ 1 ] 40

k<−1

f i rms . knn.1<−knn . cv (X, y , k , prob=TRUE)

Predicted<−f i rms . knn . 1

# Confusion matrix ( with p lug in p r e d i c t i o n s ) and m i s c l a s s i f i c a t i o n ra t e f o r k = 1

Confusion . matrix . knn.1<− t ab l e ( Observed , Pred ic ted )
Confusion . matrix . knn . 1

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 5 5
Non−Fai l ed 4 26

L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . knn . 1 )
l app ly (L , round2 )

$Err1
[ 1 ] 0 . 5

$Err2
[ 1 ] 0 .13
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$Overa l l . Err
[ 1 ] 0 .22

# A func t i on to c l a s s i f y in terms o f k . Resu l t s f o r k = 1 ,2 ,3

do . knn<−f unc t i on ( k ){
f i rms . knn . k<−knn . cv (X, y , k , prob=TRUE)
Predicted<−f i rms . knn . k
Confusion . matrix . knn . k<−t ab l e ( Observed , Pred ic ted )
p r i n t ( Confusion . matrix . knn . k )
L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . knn . k )
p r i n t ( l app ly (L , round2 ) )
}

do . knn (1 )
Pred ic ted

Observed Fa i l ed Non−Fai l ed
Fa i l ed 5 5
Non−Fai l ed 4 26

$ Err1
[ 1 ] 0 . 5

$ Err2
[ 1 ] 0 .13

$ Overa l l . Err
[ 1 ] 0 .22

do . knn (2 )

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 4 6
Non−Fai l ed 5 25

$ Err1
[ 1 ] 0 . 6

$ Err2
[ 1 ] 0 .17

$ Overa l l . Err
[ 1 ] 0 .28

do . knn (3 )

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 4 6
Non−Fai l ed 2 28

$ Err1
[ 1 ] 0 . 6

$ Err2
[ 1 ] 0 .07

$ Overa l l . Err
[ 1 ] 0 . 2
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A.4 CART Script

#
# C l a s s i f i c a t i o n and Regres s ion Trees (CART)
#
# Sample : 40 f i rms (10 Fa i l ed and 30 Non−Fai l ed ) be long ing to the s e c t o r
# 01 . Crop and animal production , hunting and r e l a t e d s e r v i c e a c t i v i t i e s ( accord ing to
# NACE Rev . 2)
#
# Firms are e i t h e r SA or SL , i n d i s t i n c t l y
# Data from the 2007−2014 per iod ( yea r l y )
#

# Read data tab le , s t o r ed in ”TFG Observations . txt ” f o r example . See ’TFG.LDA. r ’ f o r
# any prev ious d e t a i l s

f i rms<−read . t a b l e (” TFG Observations . txt ” , header=TRUE, row . names=1)

f i rms . f a i l e d<−f i rms [ f i rms$C la s s==”Fa i l ed ” ,−8]
f i rms . non . f a i l e d<−f i rms [ f i rms$C la s s==”Non−Fai l ed ” ,−8]

# An a u x i l i a r y func t i on to compute m i s c l a s s i f i c a t i o n e r r o r s from a [ 2 , 2 ] con fu s i on matrix

m i s c l a s s i f i c a t i o n . e r r o r s<−f unc t i on (T){
Err1<−T[ 1 , 2 ] / sum(T[ 1 , ] )
Err2<−T[ 2 , 1 ] / sum(T[ 2 , ] )
Overa l l . Err<−1−sum( diag (T) )/ sum(T)
return ( l i s t ( Err1=Err1 , Err2=Err2 , Overa l l . Err=Overa l l . Err ) )
}

# And another smal l one f o r s y n t a c t i c purposes

round2<−f unc t i on ( x ){ round (x , 2 )}

# Build a C l a s s i f i c a t i o n Tree us ing Gini Impurity Measure

r e q u i r e ( rpar t )
r e q u i r e ( rpar t . p l o t )

f i rms . t ree<−rpar t ( Class ˜ . , data=f i rms , method=” c l a s s ”)
rpar t . p l o t ( f i rms . t r e e )
summary( f i rms . t r e e )

# Build a C l a s s i f i c a t i o n Tree us ing Entropy

f i rms . t r e e .2<− rpar t ( Class ˜ . , data=f i rms , method=” c l a s s ” , m in sp l i t =10,
parms=l i s t ( s p l i t =”in fo rmat ion ”) )

rpar t . p l o t ( f i rms . t r e e . 2 )
summary( f i rms . t r e e . 2 )

#
# Confusion matrix and m i s c l a s s i f i c a t i o n ra t e in both ca s e s
#

Predicted<−p r e d i c t ( f i rms . t ree , f i rms , type=” c l a s s ”)
Confusion . matrix . t ree<−t ab l e ( Observed=f i rms$Clas s , Pred ic ted = Pred icted )
as . matrix ( Confusion . matrix . t r e e )

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 8 2
Non−Fai l ed 5 25

L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . t r e e )
l app ly (L , round2 )

$Err1
[ 1 ] 0 . 2

$Err2
[ 1 ] 0 .17
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$Overa l l . Err
[ 1 ] 0 .18

Pred ic ted .2<−p r e d i c t ( f i rms . t r e e . 2 , f i rms , type=”c l a s s ”)
Confusion . matrix . t r e e .2<− t ab l e ( Observed=f i rms$Clas s , Pred ic ted = Pred icted . 2 )
as . matrix ( Confusion . matrix . t r e e . 2 )

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 8 2
Non−Fai l ed 1 29

L.2<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . t r e e . 2 )
l app ly (L . 2 , round2 )

$Err1
[ 1 ] 0 . 2

$Err2
[ 1 ] 0 .03

$Overa l l . Err
[ 1 ] 0 .07
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A.5 Neural Networks Script

#
#
# Neural Networks (NN)
#
# Sample : 40 f i rms (10 Fa i l ed and 30 Non−Fai l ed ) be long ing to the s e c t o r
# 01 . Crop and animal production , hunting and r e l a t e d s e r v i c e a c t i v i t i e s ( accord ing to
# NACE Rev . 2)
#
# Firms are e i t h e r SA or SL , i n d i s t i n c t l y
# Data from the 2007−2014 per iod ( yea r l y )
#

# Read data tab le , s t o r ed in ”TFG Observations . txt ” f o r example . See ’TFG.LDA. r ’ f o r
# any prev ious d e t a i l s

f i rms<−read . t a b l e (” TFG Observations . txt ” , header=TRUE, row . names=1)

f i rms . f a i l e d<−f i rms [ f i rms$C la s s==”Fa i l ed ” ,−8]
f i rms . non . f a i l e d<−f i rms [ f i rms$C la s s==”Non−Fai l ed ” ,−8]

# An a u x i l i a r y func t i on to compute m i s c l a s s i f i c a t i o n e r r o r s from a [ 2 , 2 ] con fu s i on matrix

m i s c l a s s i f i c a t i o n . e r r o r s<−f unc t i on (T){
Err1<−T[ 1 , 2 ] / sum(T[ 1 , ] )
Err2<−T[ 2 , 1 ] / sum(T[ 2 , ] )
Overa l l . Err<−1−sum( diag (T) )/ sum(T)
return ( l i s t ( Err1=Err1 , Err2=Err2 , Overa l l . Err=Overa l l . Err ) )
}

# And another smal l one f o r s y n t a c t i c purposes

round2<−f unc t i on ( x ){ round (x , 2 )}

# C l a s s i f i c a t i o n us ing the mu l t i l ay e r perceptron with 2 l a y e r s
# and 2 un i t s in the hidden l a y e r

r e q u i r e ( nnet )

f i rms . nn<−nnet ( Class ˜ . , data=f i rms , s i z e =2)
summary( f i rms . nn )
p r i n t ( f i rms . nn )

# Confusion matrix and m i s c l a s s i f i c a t i o n ra t e

Observed<−f i rms$C la s s
n<−l ength ( Observed )

Predicted<−p r e d i c t ( f i rms . nn , f i rms , type=” c l a s s ”)
Confusion . matrix . nn<−t ab l e ( Observed=f i rms$Clas s , Pred ic ted = Pred icted )
as . matrix ( Confusion . matrix . nn )

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 10 0
Non−Fai l ed 3 27

L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . nn )
l app ly (L , round2 )

$Err1
[ 1 ] 0

$Err2
[ 1 ] 0 . 1

$Overa l l . Err
[ 1 ] 0 .07

# C l a s s i f i c a t i o n us ing the mu l t i l ay e r perceptron with 2 l a y e r s
# and 3 un i t s in the hidden l a y e r
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f i rms . nn.2<−nnet ( Class ˜ . , data=f i rms , s i z e =3)
summary( f i rms . nn . 2 )
p r i n t ( f i rms . nn . 2 )

# Confusion matrix and m i s c l a s s i f i c a t i o n ra t e

Pred ic ted .2<−p r e d i c t ( f i rms . nn . 2 , f i rms , type=”c l a s s ”)
Confusion . matrix . nn.2<− t ab l e ( Observed=f i rms$Clas s , Pred ic ted = Pred icted . 2 )
as . matrix ( Confusion . matrix . nn . 2 )

Pred ic ted
Observed Fa i l ed Non−Fai l ed

Fa i l ed 8 2
Non−Fai l ed 7 23

L<−m i s c l a s s i f i c a t i o n . e r r o r s ( Confusion . matrix . nn . 2 )
l app ly (L , round2 )

$Err1
[ 1 ] 0 . 2

$Err2
[ 1 ] 0 .23

$Overa l l . Err
[ 1 ] 0 .22
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