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a b s t r a c t

Two procedures for the measurement of the extinction cross section (ECS) of one
particle using a slightly focused Gaussian beam have been introduced and numerically
tested. While the first one relies on previously introduced ideas and has close con-
nection with the optical theorem, the second procedure is new and is mostly related
with light measurements where the detector collects much of the energy of the
incident beam.

Both procedures prove to be valid and somehow complementary up to particle sizes
of the order of the beam waist, thus enlarging the capability of simple measurement
set-ups based on Gaussian beams for the estimation of the ECS of one particle.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The calculation and measurement of the ECS of one
singe particle is a common problem in light scattering
theory [1,2]. The generalization of the definition of ECS to
the case of non-plane incident wave is also a topic widely
addressed. Of course, one of the cases of major interest is
for Gaussian beams. Without going very back in time,
some relevant references are (in chronological order) [3–
9]. A complete review of the topic is done in [10].

Nowadays, the ease of use of Gaussian beams focused
on one particle suggests that it would be useful to devise
approximate experimental procedures for the measure-
ment of the ECS of the particle based on that configuration.
In our work we will consider a linearly polarized Gaussian
beam slightly focused (divergence angles up to a max-
imum of 10°) as the incident excitation.

In this context, we propose two approximate methods
for the measurement of the ECS of a single particle by

means of the detection of light without and with the
particle placed on the focus of the incoming Gaussian
beam. One of the procedures was already introduced in
Ref. [5] and relies on the light detection only in a small
angle in the forward direction. Conversely, the second
procedure that we will propose will be more adequate
when light collecting angles are wider.

In Ref. [5], the validity of several approximate expres-
sions for the calculation of the ECS by using Gaussian
beams is discussed in great detail, both from an analytical
and from a numerical point of view. Restricting ourselves
to numerical tests, the present work checks the accuracy of
the two methods we will propose by means of computer
calculations and analyzes how they compare with analy-
tical results for spherical particles using Mie theory. The
work is based on the explicit numerical calculation of the
Poynting vector of the waves reaching the light detector.
This detector is considered to be of finite aperture, sub-
tending a well-known angle from the center of the Gaus-
sian beam, just the precise position where the particle is
placed. For this purpose, specific and precise numerical
methods have been developed. The necessary procedures
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for the detailed development of our ideas are presented as
follows:

2. Development of specific numerical methods to
handle the problem

For the calculation of the Poynting vector at any point
in space, the interference between the beam illuminating
the particle and the subsequently scattered field must be
explicitly formulated.

In our thought experiment (Gedankenexperiment) the
illumination is performed with a Gaussian beam with
small divergence angle sin ðδ0Þ ¼NAeff , whose mathema-
tical expression (within the standard paraxial theory) is:

Eðz; ρÞ ¼ E0
ω0

ωðzÞexp
�ρ2

ω2ðzÞ

� �
exp i

kρ2

2RðzÞ�ΦGðzÞ
� �

exp iðkzÞ;

ð1Þ

where ω0 is the beam radius in the focal plane, RðzÞ ¼
z 1þ zR

z

� �2� �
, zR ¼ kω2

0
2 , ΦGðzÞ ¼ tan �1 z

zR

� �
, ρ is the radial

distance from the axis and k the wave-vector.
The previous formulae assume the Z axis to be beam

axis and the X and Y directions to be in the transverse
directions. We will assume that the Gaussian beam is lin-
early polarized, with the electric field having always the
direction of the constant unit vector êx. Within this
approximation, the corresponding magnetic field is:

H¼ êz � E
cμ0

; ð2Þ

with c the speed of light and μ0 the magnetic permeability
of vacuum. Given the wavelength λ, power P0 and
NAeff ¼ sin ðδ0Þ the peak amplitude E0 can easily be found
by using

ω0 ¼
λ

πδ0
ð3Þ

and

P0 ¼
πE20ω

2
0

4cμ0
ð4Þ

We plan to use the Mie theory for the calculation of the
scattered field, but this theory is developed for a spherical
particles excited by a linearly polarized plane wave (of
amplitude Ep). Generalized Mie theories [10] can tackle the
situation of spatially inhomogeneous illumination. Yet, if
the particle can be considered as homogeneously polar-
ized, the use of Mie theory is well justified [2]. In any case,
since our illumination is not a plane wave, we have to
estimate Ep for the particle, when it is being excited by the
Gaussian beam.

When the particle (with radius a) is centered in the
beam waist, even when the particle is small, taking Ep ¼ E0
is not the best choice since, as the Gaussian profile has a
maximum on axis, this assumption always overestimates
the value for Ep. We propose calculate Ep as follows.

a. Find the power incident on a centered circle of radius
a,

Pa ¼ P0 1�exp
�2a2

ω2
0

 ! !
ð5Þ

b. Find the constant (‘mean’ ) value for the electric field
Em that corresponds to the flux of the power Pa across
the area πa2; this is

Em ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Paη0
πa2

r
; with η0 ¼ 377 Ω: ð6Þ

c. Assume Ep ¼ Em.

Besides, this approach does not require the size of the
particle to be very small. Once Ep is estimated, the Mie
theory can be used, giving for the scattered field

Esðr; θ;ϕÞ � Ep
exp iðkrÞ

� ikr
Xðθ;ϕÞ: ð7Þ

The Mie theory provides the calculation of the angular
term, the vector scattering amplitude Xðθ;ϕÞ, by assuming
a spherical shape for the particle, with radius a. This topic
is very well known; in Ref. [2] all important details can be
found. Particularly, in our work we will make continuous
use of the result regarding to the number of terms (in the
final series development) that is enough for an accurate
representation of the scattered field [11]. This result relates
explicitly the number of terms to the radius of the particle
(more terms required as the particle gets bigger). Thus, we
consider our calculations of the scattered field as ‘exact’
since we have fulfilled the requirements imposed by the
condition discussed in Ref. [11].

According to our previous choice for the axis, the
scattered field will have the three spatial components but,
clearly the longitudinal one (Z) will be negligible in the far
field with respect to the other two. Thus, finally, when
there is a particle present in the path of the Gaussian
beam, we will consider the Jones vector of the total field
reaching the light detector in the far zone to be

EGþEsjx
Esjy

 !
; ð8Þ

where Es is the scattered field generated by the Gaussian
beam EG.

This formulation shows that, since the Cartesian com-
ponents of the scattered field (in the far field) are being
calculated, we can calculate the interferences (sum)
between this scattered field and the incident Gaussian
beam. The scenario is like in Figure 3.7 of Ref. [2], with the
difference of assuming illumination by means of a Gaus-
sian beam, not with a plane wave like there (see Fig. 1).

A careful analysis of Fig. 1 illustrates that the compu-
tation of the Poynting vector of the resulting field on the
points of the sphere and subsequent integration over the
area defined by the aperture of the detector, allows us to
calculate the power collected by this detector. According to
Fig. 1, the collecting area will be defined on the imaginary
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sphere by the conditions

0rθrθmax; 0rϕo2π: ð9Þ
A set of scripts and functions was written in MATLAB

language, implementing the above ideas.
As an illustrative example, by using the cited programs,

we have computed the power reaching the detector with
or without the particle at the focus. Fig. 2(a) plots as a
continuous red line the watts collected up to the angle
θmax indicated by the abscissa, when the particle is at the
center of the waist. The wavelength is 1 μm (Au complex
refractive index 0.26þ6.97 i). The incident power is
P0 ¼ 10:0 mW, with a beam waist radius of ω0 ¼ 1:58 μm
(beam divergence angle δ0 ¼ 11:51, i.e. 0.2 rad). The radius
of the particle is a¼ 0:3 μm and the radiation due to the
particle is calculated by the Mie theory (under the
assumptions previously discussed) by estimating the
amplitude of the plane wave as indicated in the steps a–b–
c previously. Similarly, up to the angle θmax indicated by
the abscissa, the dotted blue line shows the amount of
light collected without the particle (thus, for the incident
beam alone. The continuous green line corresponds to the
corresponding amount of scattered light. The same results
are sketched in Fig. 2(b) using a double logarithmic scale
to better illustrate the behavior for small collecting angles.

It isQ3 worth considering in detail the meaning of the
results represented in this Figure, since they will be a clear
indication of the overall accuracy of our calculations. Fol-
lowing the notation used in Ref. [12], the Poynting vector
reaching any point of the detector area, corresponding to
the incident field alone (no particle present) is written as
Si. The integral of this Poynting vector up to the angle θmax

indicated by the abscissa is the dotted blue line in the
Figures. Similarly, when the particle is placed in the beam
waist, the Poynting vector of the resulting wave is written
S¼ SiþSsþSext, where Ss stands for the scattered field and
Sext is the term that arises because of interaction between
the incident and scattered waves. The integral of this
Poynting vector S up to the angle θmax indicated by the
abscissa is the red line in the Figures, while the green line
is the integral for Ss. Thus, the role of the interference term

Sext is evidenced, since the red line cannot be obtained
simply by adding the green and the blue ones.

There are several interesting features of the graph:

� One can see the increase of the values for the incident
beam as the collecting angle increases; the increase is
noticeable up to values of θmax of the order of δ0; then,
strictly speaking, the values still increase up to 90°; for
θmax above 90°, the decrease has the opposite tendency
than from 0° to 90°.

� One can see that the scattered field increases mono-
tonically as the collecting angle increases, as expected.

� One can check that the final value of the scattered
power (i.e. for 180°) coincides with the value predicted
by the Mie Theory for our amplitude of the plane wave
Ep and our particle radius.

In summary, we are confident that we have the
numerical tools for the precise calculation of the fields
scattered by one particle as well as for the accurate
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Fig. 1. Geometry associated to our Gedankenexperiment. The sphere is in
the far field and we will assume that the detector collects all the energy
propagating up to a maximum (limiting) angle θmax.

Fig. 2.
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integration of the resulting Poynting vectors on integration
areas defined by angular zones centered on the focus of
the incoming Gaussian beam.

3. Statement of the two procedures

Assume we have a configuration like in Fig. 1. When the
particle is not present, we have simply the incident beam
and we name the collected power Pc

i . With the particle at
the center of the waist of spot size (radius) ω0, the power
at the detector will be Pc

t . Note that we use a superscript in
our formulas since they are related to the light effectively
‘collected’ by the detector, as defined by its position
and size.

As indicated in the introduction, the first procedure we
propose here was already devised in Ref. [5]. In this
Reference the justification of the method is also presented;
there is no precise indication of the size of the light
detector: it should be as small as possible since the pro-
cedure is based on measuring the intensity strictly in the
forward direction. In summary, by measuring the power
received by a detector placed in the forward direction with
respect to the incoming Gaussian beam, according to what
we call ‘Procedure I’, the estimated value for the extinction
cross section is:

CI
ext ¼ πω2

0 1�Pc
t

Pc
i

� �
¼ πω2

0
Pc
i �Pc

t

Pc
i

� �
ð10Þ

With our numerical methods, we will be able to study
the influence of the size of the detector, which is equiva-
lent to say to its angular size (θmax in our expressions). This
influence is important in practice because there is a com-
promise between the size of the detector and the amount
of collected light, since if we want to restrict ourselves
only to the forward direction, we have to tend to a very
small detector, leading to small intensity measurements.
Thus, our numerical procedures can be used to evaluate
quantitatively this compromise, as will be shown below.

The second procedure we will study in the present
work is, to the best of our knowledge, a new proposal. It is
based in a few simple ideas (to be immediately exposed)
and constitutes an alternative approach to the problem.
We will see that this second procedure is more adequate
than the first when the collecting angle increases, allowing
more light detection. Thus, it constitutes an alternative
approach that will be analyzed and compared with the
first procedure by means of our numerical methods.

Let us establish precisely this ‘Procedure II’. The main
underlying idea behind the method is one elementary
result from the theory of Gaussian beams: the fraction of
the power of a Gaussian beam of waist size ω0, incident
over a centered circle of radius r is

exp
�2r2

ω2
0

 !
ð11Þ

Thus, following the mathematical notation just intro-
duced, our assumption in our method is: the presence of
the particle of unknown effective radius r at the center of
the beam waist of size ω0 reduces the power at the

detector from the value Pc
i to the value Pc

t . This is equiva-
lent to write

Pc
t

Pc
i
¼ exp

�2r2

ω2
0

 !
ð12Þ

from where

r2 ¼ �ω2
0

2
ln

Pc
t

Pc
i

� �
¼ω2

0

2
ln

Pc
i

Pc
t

� �
ð13Þ

and finally

CII
ext ¼ πr2; which is CII

ext ¼ π
ω2
0
2

ln
Pc
i

Pc
t

� �
ð14Þ

Note that we are finding an ‘effective’ radius r as
defined by the fact that it is the one that would give to our
beam the extinction we are measuring.

Besides, assuming weakly radiating particles Pc
i /P

c
t is

close to 1 and by taking only the first term of the series
expansion of the ‘ln’ in expression (14), we can easily
obtain an ‘approximate formula’ for Procedure II:

CII'
ext � πω2

0
Pc
i �Pc

t

2Pc
t

� �
ð15Þ

As before, for Procedure I, our computations will allow
checking the adequacy of these different proposals, with-
out restriction for different sizes and particle materials.

In summary, we are proposing in the present work the
comparison between three formulas, corresponding to two
different conceptual approaches. Procedure I leads to
expression (10) and Procedure II gives expression (14),
which can be approximated by formula (15). Thus, the
difference between Procedure I and the ‘approximate for-
mula’ for Procedure II is contained in the two factors

Pc
i �Pc

t

Pc
i

and
Pc
i �Pc

t

2Pc
t

ð16Þ

that multiply the common term πω2
0. In the following,

our numerical techniques will be used to evaluate quan-
titatively the suitability of any of the three choices:
expression (10), expression (14) and expression (15).

4. Test and comparisons for spherical particles

Fig. 3 shows the results of using the two procedures for
estimating the cross section of a 50 nm gold particle in the
range of wavelengths from 200 to 1000 nm. The optical
constants of Au are taken from Ref. [13]. For such particle
and spectral range, the extinction cross section is domi-
nated by Au interband transitions below 500 nm and a
dipolar plasmon resonance around 520 nm.. We consider a
Gaussian beam with δ0 ¼ 5:7¨ ¼ 0:1 rad. It is important to
note that, as we are assuming δ0 ¼ 5:7¨ to be constant, the
size of the waist increases linearly with the wavelength,
since ω0 ¼ λ

πδ0
for Gaussian beams. For comparison, we will

assume light detectors collecting up to five different
angular widths, so that the angle θmax can be 1°, 2°, 6°, 10°
or 15° wide as seen from the center of the beam waist.
Thus, for the smaller collecting angles only part of the
incident beam will be effectively collected when no par-
ticle is present in the beam path, as indicated in previous
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Fig. 2. Fig. 3(a) shows the results of using Procedure I: the
actual results given by the Mie theory are presented as
black dots and the values with Procedure I using the
energies up to 1°, …15° as continuous lines. Fig. 3(b)
shows the same kind of results for Procedure II. It is clear
that results for Procedure I are accurate for small angles
and those of Procedure II for big angles, as could be
expected from the very definition of them. For better
comparison between the results, Fig. 3(c) shows the
results of Procedure I for 2° (red line) with those of Pro-
cedure II for 15° (green line). The values obtained for the
‘approximate formula’ for Procedure II (formula 15) are
virtually the same as the exact ones (formula 14) and only
one green line corresponding to formula (14) is shown.

Keeping the particle size of 50 nm, the results show
exactly the same kind of behavior for water (refractive
index around 1.33) and for Si (refractive index around 3.5)
and therefore the plots are not shown for brevity.

Fig. 4 shows the results for the estimation of the cross
section of a 500 nm gold particle in the range of wave-
lengths from 200 to 2000 nm using the same type of
Gaussian beam.

Now the behavior of the two Procedures is more
complex. One reason is evident and expected: when the
size of the particle is of the same order (or bigger) than the
waist of the beam, the accuracy is poor; this is what we see
for wavelengths below 600 nm. Under these conditions, it
cannot be assumed that the particle is polarized homo-
geneously and replacing the Gaussian beam by a plane
wave is not well justified. Above 600 nm the results of
Procedure I are accurate for small detector angles, as in the
previous case. However, now the results for Procedure II
do not become more accurate if the detection angle is
arbitrarily increased. On the contrary, it seems there is
some optimum collection angle where the results of this
Procedure present the best accuracy (somewhere around
10°). The results for the ‘approximate formula’ of Proce-
dure II (expression 15) differ from the exact ones (those of
expression 14) for short wavelengths; since they tend to be
even less accurate, the results given by (15) will not be
shown in the plots.

To find an explanation for the worse performance of
this Procedure II, Fig. 5(a) plots together two kinds of light
power collected, for 548 nm wavelength. For the incident
beam (blue line) and scattered beam (green line) the
computed ‘power collected per angular degree’ is shown
while the red line corresponds to the ‘power accumulated’
corresponding to the resulting total field (incident plus
scattered). We call ‘power collected per angular degree’
(for some angle θ expressed in degrees) the light power
comprised between θ�11 and θ1 (for 0rϕo2π). We call
‘power accumulated’ (for some angle θ expressed in
degrees) the light power comprised between 0° and θ1
(again for 0rϕo2π). In Fig. 5, the θ values in the X axis go
from 1° to 18°. One can see that the power related to the
incident beam (blue line) is equal to the power related to
the scattered beam (green) at 9° approx. The light being
collected above this angle is primarily light scattered by
the particle and therefore cannot be interpreted as a
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Fig. 3. (a) ResultsQ4 of using Procedure I for a 50 nm radius gold particle,
depending on the light collecting angle. (b) Results of using Procedure II
for a 50 nm radius gold particle, depending on the light collecting angle.
(c) Results of Procedure I for 2° (red line) compared with those of Pro-
cedure II for 15° (green line). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)
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contribution to the shadow casted to the Gaussian beam.
Thus the best estimation of the ECS at this wavelength
using Procedure II is obtained if the collection angle is

limited to avoid scattering contributions that do not
remove energy from the incident beam (see Eq. (12)). Fig. 5
(b) plots the same quantities for the wavelength of
1087 nm. Now the equality of powers takes place at about
12°. However, a good estimation of the ECS is obtained for
both 10 and 15 deg. Now, the scattered light collected
when the detection angle is increased above this critical
angle represents only a small contribution (compare the
orders of magnitude) to the already collected power. In
this situation of relatively small scattering at large detec-
tion angles, results from Procedure II are insensitive to the
maximum detection angle because Pc

t does not remarkably
change above certain angle. Thus, Procedure II will be
accurate for any detection angle provided the detector
covers most of the region where the incident and scattered
fields significantly interfere.
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Fig. 4. (a) Results of using Procedure I for a 500 nm radius gold particle,
depending on the light collecting angle. (b) Results of using Procedure II for
a 500 nm radius gold particle, depending on the light collecting angle. (c)
Results of Procedure I for 2° (red line) compared with those of Procedure II
for 15° (green line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) For 548 nm. Power collected per angular degree of the incident
beam (blue line) and of the scattered beam (green line). Power accu-
mulated corresponding to the resulting field (red line). (b) For 1087 nm.
Power collected per angular degree of the incident beam (blue line) and
of the scattered beam (green line). Power accumulated corresponding to
the resulting field (red line). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)
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Again, for this new particle size of 500 nm we have
computed the same kind of results for water, for Si (and
even for Ag). The behavior is completely similar to what
we have shown for Au and we do not present the plots.

5. Conclusions

We have numerically tested two procedures for the
estimation of the extinction cross section of one particle
using a slightly focused Gaussian beam. Both procedures
require placing the particle in the center of the waist and
measuring the decrease of the light reaching the detector
(assumed centered on the path of the beam). If the two
power measurements (without and with the particle on
the light path) are Pc

i and Pc
t and the beam waist radius is

ω0, the two procedures give for the extinction cross section
the expressions (10) and (14) (respectively for Procedures I
and II). With the approximation introduced in (15), the
difference between Procedures I and II is virtually con-
tained in the formulas (16).

We have presented explicit comparisons for gold
spheres of radius of 50 and 500 nm, in the range between
200 and 2000 nm, for an incident beam with δ0 ¼ 5:7¨ and
collecting angles of 1°, 2°, 6°, 10° and 15°. We have also
performed series of calculations for spheres of H2O, Si and
Ag, for different beam divergence angles, obtaining in all
the cases the same conclusions regardless the properties of
the material.

The analysis of these results allows us to summarize
the conclusions as follows.

1) We have verified the validity of both procedures to
determine the ECS of particles with sizes significantly
smaller than the beamwaist. Besides, we have been able
to illustrate the role of the angle of the light detector in
the measurements.

2) We have shown that Procedure I is accurate when the
angle subtended by the light detector from the center of
the waist is very small (say about 2°) while Procedure II
is accurate when the light detector is such that collects
all the light of the incident beam up to the angle where
its intensity is similar to that of the scattered. Procedure
II gives also accurate results for larger collecting angles
provided the light scattered at these angles does not
significantly modify Pc

t .

3) Since we have a quantitative assessment of the validity
of the two approaches, we can use these ideas to eval-
uate the precision related to one particular practical
configuration.

4) Our study introduces the possibility of using Procedure
II when the intensity of the light detected (associated to
the small collecting angle of Procedure I) is a limiting
practical issue.
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