JCM Accepted Manuscript Posted Online 6 April 2016 J. Clin. Microbiol. doi:10.1128/JCM.00142-16 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

1 Serological diagnosis of chronic Chagas disease: Is it time for a change?

- 3 Alba Abras,^{a,b,1} Montserrat Gállego,^{a,b,1} Teresa Llovet,^{c,d} Silvia Tebar,^{a,b} Mercedes
- 4 Herrero, ^{c,d} Pere Berenguer, ^{c,d} Cristina Ballart, ^{a,b} Carmen Martí, ^e Carmen Muñoz, ^{c,d,f,#,1}

5

2

6 Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries,

- 7 Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain^a; ISGlobal, Barcelona
- 8 Centre for International Health Research (CRESIB), Barcelona, Spain^b; Servei de
- 9 Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain^c; Institut
- 10 d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau,
- 11 Barcelona, Spain^d; Unitat de Microbiologia, Hospital General de Granollers, Granollers,

12 Spain^e; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona,

- 13 Cerdanyola del Vallès, Spain^f
- 14
- 15 #Address correspondence to Carmen Muñoz: Servei de Microbiologia, Hospital de la
- 16 Santa Creu i Sant Pau, Sant Quintí 89, 08026, Barcelona, Spain. Tel.: +34 935537298.
- 17 FAX: +34 935537287. E-mail address: cmunoz@santpau.cat
- 18
- 19 Authors contributed equally¹
- 20
- 21 Running title: Changes in the serological diagnosis of chronic Chagas disease
- 22
- 23 Keywords: chronic Chagas disease, serology, Architect Chagas

24 ABSTRACT

25	Chagas disease has spread to non-endemic areas with human migration. Since no
26	single reference standard test is available, serological diagnosis of chronic Chagas
27	disease requires at least two tests. New generation techniques have significantly
28	improved the accuracy of Chagas disease diagnosis by the use of a large mixture of
29	recombinant antigens with different detection systems, such as chemiluminescence. The
30	aim of the present study was to assess the overall accuracy of a new generation kit,
31	Architect Chagas (cut-off \geq 1 S/CO, sample relative light units/cut-off value), as a
32	single technique in the diagnosis of chronic Chagas disease. Architect Chagas showed a
33	sensitivity of 100% (95% confidence interval, $CI = 99.5-100$) and a specificity of 97.6%
34	(95% CI = 95.2-99.9). Five out of six false-positive sera were a consequence of cross-
35	reactivity with <i>Leishmania</i> spp. and all of them achieved results < 5 S/CO. We propose
36	Architect Chagas as a single technique for screening in blood banks and for routine
37	diagnosis in clinical laboratories. Only grey zone and positive sera with a result ≤ 6
38	S/CO would need to be confirmed by a second serological assay, thus avoiding false-
39	positive sera and the problem of cross-reactivity with Leishmania spp. The application
40	of this proposal would result in important savings in the cost of Chagas disease
41	diagnosis and therefore in the management and control of the disease.
42	

43 INTRODUCTION

44	Chagas disease or American trypanosomiasis is a parasitic infection traditionally
45	linked to rural areas of Latin America (1). Based on 2010 data, an estimated 5,742,167
46	people are infected in 21 Latin American countries (2). The epidemiology of Chagas
47	disease has changed because of migratory trends and it is now an emerging public
48	health problem in the United States and Europe (3, 4), notably in Spain, the European
49	country with the largest number of immigrants from Latin America (3, 5).
50	The flagellated protozoan Trypanosoma cruzi is mainly transmitted in endemic areas
51	through contact with the dejections of blood-feeding triatomine bugs (6, 7) and more
52	rarely by oral transmission through contaminated food (8, 9). The infection may also
53	occur in both endemic and non-endemic areas through blood transfusion (10), organ
54	transplant (11), congenital transmission (12) and laboratory accidents (13), allowing the
55	disease to spread to urbanized areas (14).
56	Chagas disease occurs in two stages: the acute phase, without symptoms or with
57	nonspecific manifestations in the majority of cases, and the chronic phase, characterized
58	by cardiac and/or gastrointestinal disorders. In the chronic indeterminate phase of the
59	disease most patients remain asymptomatic all their lives (15, 16).
60	Due to the low and intermittent parasitemia, diagnosis during the chronic phase of
61	Chagas disease is made by serological methods (10, 15, 16). There are two types of
62	serological techniques for the detection of anti-T. cruzi antibodies: conventional tests
63	using a whole parasite antigen, and non-conventional tests based on recombinant
64	antigens (17, 18). Cross-reactivity, especially in conventional assays, is a particular
65	problem for the serological diagnosis of Chagas disease in regions where Leishmaniasis
66	also occurs (15, 19). Although numerous assays are available for diagnosing Chagas
67	disease, no single test is considered the reference standard (19-21).

69

70

71	are required (22), thereby increasing the cost of diagnosis. The plethora of serological
72	tests used to identify T. cruzi infections often demonstrate discrepant results, which
73	makes serum interpretation difficult (22, 23). Moreover, T. cruzi has great genetic
74	diversity and is currently divided into six genotypes known as discrete typing units
75	(DTUs TcI-TcVI) (24). Discordant results between assays are often attributed to
76	antigenic differences among recombinant proteins or T. cruzi DTUs (23, 25).
77	New generation tests with potentially improved accuracy have been recently
78	developed. The use of a large mixture of recombinant antigens and the incorporation of
79	different detection systems, such as chemiluminescence, increase the sensitivity and
80	specificity of the techniques. Other advantages of new generation tests are automation,
81	rapidity and high-performance. Among them, Architect Chagas (Abbott Laboratories,
82	Wiesbaden, Germany), a chemiluminescent microparticle immunoassay (CMIA), uses
83	four recombinant proteins as the antigen (26–28).
84	The aim of the present study was to assess the overall accuracy of a new
85	generation kit that combines a mixture of recombinant proteins with chemiluminescence
86	(Architect Chagas). The application of this single technique in the diagnosis of chronic
87	Chagas disease modifies the aforementioned diagnostic recommendations. Accordingly,
88	it could lead to a reduction in the cost and time of diagnosis and be the first step to reach
89	a consensus on a standard protocol.
90	

To date, an individual is diagnosed as infected with T. cruzi in the chronic phase

of the disease when the results of two serological tests are positive (17). When

inconclusive or discordant results appear, a third technique (17) or additional samples

- 91
- 92

JCM

93 MATERIAL AND METHODS

- 94 Ethics statement. This study was approved by the Clinical Research Ethics Committee
- 95 (CEIC) of the Hospital de la Santa Creu i Sant Pau in Barcelona (Project code: IIBSP-
- 96 CHA-2013-33; CEIC number: 53/2013). All samples were anonymized before being
- 97 evaluated and included in the study.
- 98 Study population and serum samples. A total of 315 sera of adults attended in the
- 99 Hospital de la Santa Creu i Sant Pau of Barcelona (Spain) were used in this work.
- 100 Clinical data were recorded by a retrospective review of patient files through the
- 101 computer system Systems, Applications and Products for Data Processing (SAP).
- 102 Serum samples (conserved at -40°C) were collected during the period January 2009 to
- 103 December 2012 and divided in four panels (I to IV):
- 104 Panel I (n = 107): samples of chronic chagasic seropositive patients from endemic
- 105 countries for Chagas disease in Latin America diagnosed in Spain (96% from Bolivia,
- 106 2% from Argentina, and 2% from Paraguay).
- 107 Panel II (n = 125): samples of non-chagasic individuals from both endemic (n = 64) and
- non-endemic countries (n = 61) for Chagas disease.
- 109 For panels I and II, samples had concordant results for two enzyme-linked
- 110 immunosorbent assays (ELISAs) using whole-parasite antigen (ELISAc) (29) and
- 111 recombinant antigens (ELISAr) (BioELISA Chagas, Biokit, Lliçà d'Amunt, Spain).
- 112 Clinical and epidemiological data were considered for the selection.
- 113 Panel III (n = 12): samples of individuals from endemic countries for Chagas disease
- 114 with discrepant serological results diagnosed in Spain. These samples had discordant
- 115 results for ELISAc and ELISAr and were also tested by a Western blot (WB) (19) in
- 116 order to get the final interpretation (11 considered negative and 1 positive). Clinical and
- 117 epidemiological data were also considered for the selection.

118	Panel IV ($n = 71$): samples of patients with other infectious diseases to evaluate cross-
119	reactions (8 individuals with leishmaniasis, 7 with toxoplasmosis, 6 with amebic hepatic
120	abscess, 3 with malaria, 6 with strongyloidiasis, 1 with visceral larva migrans [VLM], 3
121	with cytomegalovirus, 7 with human immunodeficiency virus [HIV], 4 with parvovirus
122	B19, 5 with Epstein-Barr virus [EBV], 5 with hepatitis B virus [HBV], 2 with hepatitis
123	C virus [HCV], 9 with syphilis, and 5 with Lyme borreliosis). All samples had
124	serological and/or parasitological or molecular evidence of the infectious diseases
125	studied.
126	Serological assays and interpretation of results. Since there is no single widely
127	accepted reference standard test for the diagnosis of T. cruzi infections, 244 sera were
128	pre-characterized using two serological tests, according to the WHO recommendations
129	(17). The remaining 71 samples were taken from patients with other diagnoses (panel
130	IV). For the sera pre-characterization, the techniques used were two ELISAs, one of
131	them <i>in house</i> and using sonicated epimastigotes of <i>T. cruzi</i> (ELISAc) (cut-off \ge 20
132	units) (29) and the second one with recombinant antigens (ELISAr) (results [sample
133	ratio absorbance/cut-off value] < 0.9 were considered negative, \geq 1 positive and the
134	grey zone was from \ge 0.9 to < 1). Samples with positive results for both assays were
135	included in panel I and sera with negative results were included in panel II. Samples
136	with discordant results by these techniques were included in panel III and they were
137	tested by an in house WB based on lysate T. cruzi epimastigotes, as described elsewhere
138	(19). The final interpretation of panel III samples was based on results coinciding in two
139	out of the three techniques performed; thus, 11 were considered negative, and one
140	positive. In order to rule out Chagas disease, samples of patients with other infectious
141	diseases (panel IV) were also analyzed through WB.

142	All sera were tested for the presence of T. cruzi antibodies by the CMIA Architect
143	Chagas assay. This fully automated assay is based on recombinant proteins FP3, FP6,
144	FP10, and TcF. In aggregate, these four hybrid recombinant proteins represent 14
145	distinct antigenic regions (30, 31). Testing was performed according to the
146	manufacturer's instructions. The chemiluminescent reaction is measured in relative light
147	units (RLUs). Results are expressed as samples RLUs/cut-off value (S/CO). Ratios <
148	0.8 are considered negative, \geq 1 are considered positive, and the grey zone was from \geq
149	0.8 to < 1.
150	Data analysis. The following measures of diagnostic accuracy were calculated (TP: true
151	positive, TN: true negative, FP: false positive, FN: false negative): sensitivity
152	(calculated as TP/[TP+FN]), specificity (calculated as TN/[TN+FP]), validity index
153	defined as the percentage of patients correctly classified (32) (calculated as
154	[TP+TN]/[TP+TN+FP+FN]), positive and negative predictive values (PPV and NPV),
155	which are the proportion of correctly diagnosed individuals with positive (PPV) or
156	negative (NPV) results (33) (calculated as TP/[TP+FP] and TN/[TN+FN], respectively),
157	positive and negative likelihood ratios (LR+, the highest value being the best result, and
158	LR-, the lowest value being the best result), which express how many times more or less
159	frequent the test result is obtained among individuals with the disease compared with
160	those without the disease (34) (calculated as sensitivity/[1-specificity] and [1-
161	sensitivity]/specificity, respectively), Youden index, which is a measure of the overall
162	discriminative power of a diagnostic procedure (35) (calculated as
163	[sensitivity+specificity]-1), and Cohen's kappa coefficient, which describes the level of
164	concordance among tests relating the observed agreement (Ao) and the agreement
165	expected by chance (Ae) (36) (calculated as [Ao-Ae]/[1-Ae]) (values > 0.8 indicate a
166	high level of agreement) (37). Calculations were performed with the software EPIDAT

167 3.1, which is available online at http://www.sergas.es.

Economic evaluation. An economic assessment of the annual cost of Chagas disease 168 169 serology in the Hospital de la Santa Creu i Sant Pau in Barcelona was done. During the period from March 2014 to February 2015, a total of 718 sera were analyzed for the 170 171 presence of T. cruzi antibodies in our hospital. Several calculations were done: (i) the 172 annual cost of performing two assays (Architect Chagas and ELISAr) for all the 718 sera according to the WHO recommendations, (ii) the annual cost of performing 173 Architect Chagas for all sera and confirming by ELISAr grey zone (2 sera) and all 174 positive samples (98 sera), and (iii) the annual cost by having to confirm by the second 175 176 test only grey zone (2 sera) and positive ≤ 6 S/CO samples (19 sera), strategy proposed in this study. 177

178

179 RESULTS

Sera were divided in four panels: panel I (samples of chronic chagasic patients), 180 181 panel II (samples of non-chagasic patients), panel III (samples with discrepant serological results), and panel IV (samples of patients with other infectious diseases). 182 183 A coincident result of Architect Chagas with the pre-characterization was considered as true positive (TP) or true negative (TN) and a discordant result with the 184 185 pre-characterization was considered as false positive (FP) or false negative (FN) (Table 1). In this study, no FN for Architect Chagas were observed. 186 Among the 244 sera pre-characterized as positive or negative for Chagas 187 disease, 242 were concordant with Architect Chagas results. Only one serum of panel II 188 tested positive and was considered as FP and one serum of panel III gave a result in the 189 190 grey zone. Therefore, the concordance level between pre-characterized sera and the 191 results obtained with Architect Chagas was 99.2%.

5	
Ĕ	>
	တ္ပ
כ	-
ō	ē
-	0

192 The overall serum value distribution of ELISAc, ELISAr and Architect Chagas193 is shown in Fig. 1.

In reference to TP serum values (n = 108), 94 samples (87.04%) achieved results > 6 S/CO. The remaining 14 sera (12.96%) obtained values \leq 6 S/CO; 9 samples

(8.33%) obtained values from 1 to 4.9 and 5 samples (4.63\%) from 5 to 6.

When sera from patients with other infectious diseases were analyzed, 5 out of 71 samples were reactive by Architect Chagas. All of them came from *Leishmania*infected patients with Chagas disease ruled out by a WB method (19). These FP sera for Architect Chagas also showed positive results for ELISAc (values between 53 and 84 units) and negative results for ELISAr except in one case in which the sample obtained a value in the grey zone.

The serum from panel III with a grey zone result for Architect Chagas was
 positive for ELISAc (FP), negative for ELISAr, and negative for WB. The serum from

205 panel IV (Leishmania infection) with a grey zone result for ELISAr was positive for

206 both ELISAc and Architect Chagas (FP), and negative for WB. These samples were not

207 included in the calculations, resulting in a final panel of 313 sera.

208 Measures of diagnostic accuracy of the Architect Chagas assay are shown in

209 Table 2. Sensitivity, calculated using panels I and III, was 100%. Specificity, calculated

210 using panels II, III and IV, was 97.6%. FP sera obtained results between 1.8 and 4.6,

and 5 out of 6 samples came from *Leishmania*-infected patients (Table 3). A high

212 proportion of patients were correctly classified (validity index of 98.4%) and the test

showed a high level of agreement with the two techniques used in the pre-

characterization; Kappa index of 0.91 (95% confidence interval, CI = 0.86-0.95) with

ELISAc and a value of 0.94 (95% CI = 0.90-0.98) with ELISAr.

216	ELISAc scored 17 FP, 8 in panel III and 9 in panel IV (7 sera with Leishmania
217	infection and 2 with EBV). Therefore, the test showed 100% sensitivity (95% CI =
218	99.5-100), the specificity was 91.7% (95% CI = 87.7-95.7), and the validity index was
219	94.6% (95% CI = 91.9-97.2). ELISAr achieved 3 FP and 1 FN: 2 FP and the FN in
220	panel III and 1 FP in panel IV (serum with EBV). Consequently, the sensitivity and
221	specificity of the technique were 99.1% (95% CI = 96.8-100) and 98.5% (95% CI =
222	96.7-100), respectively, and the validity index was 98.7% (95% CI = 97.3-100).
223	The annual cost of performing to assays for Chagas disease diagnosis in our
224	hospital in Barcelona is €6,864.08 or US\$7,413.21. From the 718 samples analyzed
225	from March 2014 to February 2015, 618 (86.1%) tested negative using Architect
226	Chagas. Taking into account the 100% sensitivity of the test found in this study, it was
227	possible to classify the sera as negative with only a single technique. The remaining 100
228	sera (13.9%) were analyzed by two tests (Architect Chagas and ELISAr), since
229	Architect Chagas gave grey zone (2 sera, 0.3%) or positive results (98 sera, 13.6%).
230	Positive samples with results > 6 S/CO (79 sera, 11%) were also analyzed with a second
231	test (ELISAr), confirming that all of them were TP. This represents an annual cost of
232	€3,156.08 or US\$3,408.57. We propose that grey zone (2 sera, 0.3%) and positive ≤ 6
233	S/CO (19 sera, 2.6%) samples require further confirmation (TP 57.9%). If inconclusive
234	results appear, a third technique or additional samples are required. Confirmation by a
235	second test was only necessary in 21 sera, instead of the 100 positive and inconclusive
236	samples. As a result, the annual cost by not having to confirm all positive samples
237	would be €2,682.08 or US\$2,896.65 in the hospital population which represents savings
238	of €4,182 or US\$4,516.56 per year.
239	

241 DISCUSSION

242	Despite the absence of the vector, Chagas disease is now an emerging public
243	health problem in Europe and the United States due to immigration from endemic areas
244	(3, 4). Chronic forms of the disease have appeared in non-endemic countries (4, 38, 39)
245	as well as acute forms, principally due to vertical transmission (40-42). In Europe,
246	chronic forms are more abundant than congenital cases.
247	Chronic forms of Chagas disease are diagnosed serologically, requiring two tests
248	for confirmation (17). According to the World Health Organization (17), an ideal
249	serological test should be easy to perform in a single step, be fast, cheap, require no
250	special equipment or refrigeration of reagents and have 100% sensitivity and specificity,
251	but unfortunately, no such test exists for Chagas disease. The lack of a reference
252	standard serological assay for the diagnosis of T. cruzi infection has prompted the
253	development of new tests, which require further evaluation. Among them, Architect
254	Chagas, a fully automated assay using four recombinant proteins as the antigen, has
255	been scarcely studied to date (26-28).
256	Sera pre-characterization was performed by ELISAc, a conventional method
257	using parasite lysate as the antigen (29), and ELISAr, based on T. cruzi TcF antigen, a
258	recombinant fusion protein that comprises four serologically active peptides (PEP-II,
259	TcD, TcE, and TcLo1.2) (43, 44). The assay evaluated here, Architect Chagas,
260	incorporates three recombinant proteins (FP3, FP6, and FP10) in addition to the TcF of
261	ELISAr (30, 31, 45, 46). These four proteins in aggregate represent 14 different
262	antigenic regions present throughout the life cycle of <i>T. cruzi</i> (30, 45). Moreover, <i>T.</i>
263	cruzi is currently divided into six DTUs with distinct genetic profiles (24). Architect
264	Chagas is capable of detecting the genetic diversity of <i>T. cruzi</i> by the incorporation of

Journal of Clinica Microbiology

JCM

highly conserved antigenic proteins with tandemly repeated amino acid domains (26,45).

267 A well-known problem in the serological diagnosis of Chagas disease is crossreaction with antibodies produced by other pathogens, especially Leishmania spp. (15, 268 269 19, 47). All FP sera for Architect Chagas except one (5 out of 6) came from patients 270 with leishmaniasis (panel IV) (see Table 3). Although all patients were from Spain, these samples were analyzed by a WB using T. cruzi lysate epimastigotes as antigen 271 (19) in order to check possible Leishmania spp.-T. cruzi co-infections. Chagas disease 272 was ruled out in all five cases because of negative results. The remaining FP serum 273 274 belonged to a pre-characterized negative patient (panel II) from an endemic area in which leishmaniasis was ruled out. No data of other possible pathologies of the patient 275 were known. 276

In this report, the Architect Chagas recombinant test showed 100% sensitivity, 277 while specificity was 97.6% due to cross-reactions in the leishmaniasis patients. The 278 279 specificity achieved by the Architect Chagas assay excluding cross-reactions with Leishmania spp. would be 99.5%. Architect Chagas results were highly concordant with 280 tests using crude antigens, such as ELISAc (Kappa index = 0.91), but with higher 281 specificity (ELISAc sensitivity 100%; specificity 91.7%). While Architect Chagas gave 282 283 positive results in 5 out of 8 sera from Leishmania-infected patients, indicating crossreactions, ELISAc scored positive results in all the 8 sera with Leishmania spp. The 284 technique evaluated here also showed a high level of agreement with ELISAr results 285 (Kappa index = 0.94). Although specificity shown by ELISAr, and even the validity 286 287 index, was higher than Architect Chagas, this technique did not detect all positive sera 288 (ELISAr sensitivity 99.1%; specificity 98.5%; validity index 98.7%). Indeed, Architect 289 Chagas is better able than ELISAc and ELISAr to discriminate between positive and

290	negative sera (see Fig. 1). The higher sensitivity of Architect Chagas is probably due to
291	the greater diversity of proteins used as antigens, representing the three morphological
292	forms (trypomastigote, epimastigote and amastigote) and the genetic diversity of T.
293	cruzi (26, 45). Among current tests in which the number of recombinant proteins is
294	known, Architect Chagas uses the most. This higher number of recombinant antigens
295	could also explain the high level of cross-reactions with Leishmania spp. infection.
296	Consequently, this fact should be considered when studying the diagnosis of Chagas
297	disease in visceral leishmaniasis endemic areas. Other authors have previously reported
298	that mixtures of recombinant proteins are very useful as antigens for the
299	immunodiagnosis of Chagas disease (48, 49).
300	New generation techniques such as Architect Chagas or Bio-Flash Chagas
301	(Biokit, Lliçà d'Amunt, Spain) (50) have improved the diagnosis of Chagas disease
302	with innovative new tools (large mixture of recombinant antigens and
303	chemiluminescence as detection system). Previous studies have also proposed a
304	chemiluminescent ELISA (CL-ELISA) with purified trypomastigote glycoproteins for
305	the detection of lytic protective antibodies against <i>T. cruzi</i> in human sera (33, 51, 52).
306	CL-ELISA achieved high diagnostic accuracy in both endemic (51, 52) and non-
307	endemic areas (33). Detection systems such as chemiluminescence increase light
308	amplification and signal duration in comparison with traditional ELISA assays.
309	Both characteristics, a larger number of recombinant antigens and signal
310	amplification, lead to higher accuracy in the diagnosis of Chagas disease compared to
311	conventional and recombinant techniques used in this study.
312	Other authors have evaluated Architect Chagas using different populations or
313	sample conditions (26–28). Their overall results (26–28) suggest Architect Chagas is a
314	highly suitable assay for the detection of chronic <i>T. cruzi</i> infection and its use as a

single technique for routine testing in high-prevalence areas has already been
recommended (26). In contrast with what is proposed here, a reduction from 1 to 0.88 in
the CO value has been recommended, but only when blood samples on filter paper are
used (28).

319 According to the results in the present study, and preserving the manufacturer's 320 criteria for the interpretation of results, we propose Architect Chagas, or other similar new generation tests, as a single technique for the diagnosis of chronic Chagas disease 321 in blood banks and clinical laboratories in both endemic and non-endemic areas. Taking 322 into account the positive and cross-reactivity results obtained and the overall 323 324 distribution of serum values (see Fig. 1C), we suggest that only grey zone and positive sera with results ≤ 6 S/CO would need to be confirmed by a second serological assay, in 325 agreement with WHO recommendations. Sera with these results represented less than 326 18% of positive samples and 6.3% of the total sera analyzed in this study. Further 327 studies with other new generation techniques with similar characteristics (recombinant 328 329 antigens and chemiluminescence) are necessary. Several control measures exist for Chagas disease, according to the different 330 transmission scenarios (7, 14, 53), some of which have been applied by health 331 organizations or administrative governments (54-58). Previous studies on the cost-332 333 effectiveness of Chagas disease management have been undertaken (59-62), but the costs of different diagnostic methods have not been compared. 334 The adoption of a single high performance technique, like the one studied here, 335 would entail a significant saving. Indeed, the savings would be €4,182 or US\$4,516.56 336 337 per year in our hospital, if the comparison is with the cost of performing two assays for 338 all sera, the WHO-recommended strategy used to date. Our proposal would allow the

ournal of Clinical Microbiology 339 optimization of screening procedures and cost according to the document of the Sixty-

third World Health Assembly (63).

341 According to Sicuri et al. (59), 1.7 million migrants from Latin American countries endemic for Chagas disease live in Spain, where 42,173 adult immigrants are 342 343 estimated to be infected with T. cruzi (64). By 2009, in Europe an estimated 68,000 to 344 122,000 Latin American immigrants were thought to be infected by T. cruzi, but only 4,290 of them were diagnosed (65). Although Chagas disease has become a real 345 problem for countries hosting Latin American migrants, not all European countries 346 screen for the infection (57, 66), a problem that may have been exacerbated by the 347 348 recent economic crisis (57). Therefore, the management of Chagas disease in nonendemic countries is crucial to control infection. For an individual with chronic Chagas 349 disease, the estimated average lifetime cost of health-care is US\$27,684, with 350 considerable variations between countries (60). Other authors have reported that, in the 351 long term, it is cheaper to diagnose and treat individuals with Chagas disease than not 352 353 (61). Accordingly, the high rate of underdiagnosis in non-endemic countries could be increasing the final cost of Chagas disease patients. The use of a single technique would 354 reduce diagnosis costs and therefore allow the application of screening and control 355 programs in countries where such systems have not yet been implemented. 356 357 In conclusion, Architect Chagas is a highly effective assay for the detection of Chagas disease, with 100% sensitivity, and it allows the correct diagnosis of the 358 majority of samples when applied as a single technique. Architect Chagas can be used 359 as a single assay in blood banks and clinical laboratories for routine diagnosis. Only 360 361 grey zone and positive sera with a result ≤ 6 S/CO would need to be confirmed by a 362 second serological assay to avoid both FP sera and cross-reactions with Leishmania spp.

- 363 The application of this proposal would result in important savings in the cost of Chagas
- 364 disease diagnosis, and therefore in the management and control of the disease.

366 CONFLICT OF INTEREST

- 367 The authors declare that they have no conflict of interest.
- 368

369 FUNDING INFORMATION

- 370 This work was partially supported by Departament d'Universitats, Recerca i Societat de
- 371 la Informació de la Generalitat de Catalunya, Spain (2014SGR026). AA, MG and ST
- 372 belong to the RICET, a Tropical Disease Cooperative Research Network in Spain (grant
- number RD12/0018/0010). CM belongs to the Spanish Network for Research in
- 374 Infectious Diseases (REIPIRD12/0015), Instituto de Salud Carlos III, Madrid, Spain.
- 375

376 ACKNOWLEDGMENTS

- 377 The authors would like to thank Drs. Montserrat Portús, Joaquim Gascón, and Pere Coll
- 378 for their support and helpful scientific discussions.

379

380	REF	ERENCES
381	1.	Rassi Jr A, Rassi A, Marin-Neto JA. 2010. Chagas disease. Lancet 375:1388-
382		1402.
383	2.	World Health Organization. 2015. Chagas disease in Latin America: an
384		epidemiological update based on 2010 estimates. Wkly Epidemiol Rec N°6
385		(90) :33–44.
386	3.	Schmunis GA. 2007. Epidemiology of Chagas disease in non-endemic countries:
387		the role of international migration. Mem Inst Oswaldo Cruz 102 Suppl 1 :75–85.
388	4.	Gascon J, Bern C, Pinazo MJ. 2010. Chagas disease in Spain, the United States
389		and other non-endemic countries. Acta Trop 115:22-27.
390	5.	Roca C, Pinazo MJ, López-Chejade P, Bayó J, Posada E, López-Solana J,
391		Gállego M, Portús M, Gascón J. 2011. Chagas disease among the Latin
392		American adult population attending in a primary care center in Barcelona,
393		Spain. PLoS Negl Trop Dis 5:e1135.
394	6.	Prata A. 2001. Clinical and epidemiological aspects of Chagas disease. Lancet
395		Infect Dis 1:92–100.
396	7.	Sosa-Estani S, Segura EL. 2015. Integrated control of Chagas disease for its
397		elimination as public health problem - A Review. Mem Inst Oswaldo Cruz
398		110:289–298.
399	8.	Benchimol-Barbosa PR. 2010. Trends on acute Chagas' disease transmitted by
400		oral route in Brazil: Steady increase in new cases and a concealed residual
401		fluctuation. Int J Cardiol 145:494–496.
402	9.	Alarcón de Noya B, González ON. 2015. An ecological overview on the factors
403		that drives to <i>Trypanosoma cruzi</i> oral transmission. Acta Trop 151 :94–102.
404	10.	Angheben A, Boix L, Buonfrate D, Gobbi F, Bisoffi Z, Pupella S, Gandini G,

405		Aprili G. 2015. Chagas disease and transfusion medicine: a perspective from
406		non-endemic countries. Blood Transfus 13:540-550.
407	11.	Kransdorf EP, Zakowski PC, Kobashigawa JA. 2014. Chagas disease in solid
408		organ and heart transplantation. Curr Opin Infect Dis 27:418-424.
409	12.	Carlier Y, Sosa-Estani S, Luquetti AO, Buekens P. 2015. Congenital Chagas
410		disease: an update. Mem Inst Oswaldo Cruz 110:363-368.
411	13.	Herwaldt BL. 2001. Laboratory-acquired parasitic infections from accidental
412		exposures. Clin Microbiol Rev 14:659–688.
413	14.	Pinazo MJ, Gascon J. 2015. The importance of the multidisciplinary approach
414		to deal with the new epidemiological scenario of Chagas disease (global health).
415		Acta Trop 151 :16–20.
416	15.	Flores-Chávez M, de Fuentes I, Gárate T, Cañavate C. 2007. Diagnóstico de
417		laboratorio de la enfermedad de Chagas importada. Enferm Infecc Microbiol Clin
418		25 Suppl 3 :29–37.
419	16.	Bern C. 2015. Chagas' Disease. N Engl J Med 373:456–466.
420	17.	World Health Organization. 2002. Control of Chagas disease. World Health
421		Organ Tech Rep Ser 905:i-vi, 1-109, back cover.
422	18.	Longhi SA, Brandariz SB, Lafon SO, Niborski LL, Luquetti AO, Schijman
423		AG, Levin MJ, Gómez KA. 2012. Evaluation of in-house ELISA using
424		Trypanosoma cruzi lysate and recombinant antigens for diagnosis of chagas
425		disease and discrimination of its clinical forms. Am J Trop Med Hyg 87:267-
426		271.
427	19.	Riera C, Verges M, Iniesta L, Fisa R, Gállego M, Tebar S, Portús M. 2012.
428		Short report: Identification of a western blot pattern for the specific diagnosis of
429		Trypanosoma cruzi infection in human sera. Am J Trop Med Hyg 86:412–416.

430	20.	Flores-Chávez M, Cruz I, Rodríguez M, Nieto J, Franco E, Gárate T,
431		Cañavate C. 2010. Comparación de técnicas serológicas convencionales y no
432		convencionales para el diagnóstico de la enfermedad de Chagas importada en
433		España. Enferm Infecc Microbiol Clin 28:284–293.
434	21.	Carlier Y, Torrico F, Sosa-Estani S, Russomando G, Luquetti A, Freilij H,
435		Albajar-Viñas P. 2011. Congenital Chagas disease: recommendations for
436		diagnosis, treatment and control of newborns, siblings and pregnant women.
437		PLoS Negl Trop Dis 5:e1250.
438	22.	Lapa JS, Saraiva RM, Hasslocher-Moreno AM, Georg I, Souza AS, Xavier
439		SS, do Brasil PE. 2012. Dealing with initial inconclusive serological results for
440		chronic Chagas disease in clinical practice. Eur J Clin Microbiol Infect Dis
441		31 :965–974.
442	23.	Guzmán-Gómez D, López-Monteon A, Lagunes-Castro MS, Álvarez-
443		Martínez C, Hernández-Lutzon MJ, Dumonteil E, Ramos-ligonio A. 2015.
444		Highly discordant serology against Trypanosoma cruzi in central Veracruz,
445		Mexico: role of the antigen used for diagnostic. Parasit Vectors 8:466.
446	24.	Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira
447		MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade
448		SG, Sturm NR. 2012. The revised <i>Trypanosoma cruzi</i> subspecific nomenclature:
449		rationale, epidemiological relevance and research applications. Infect Genet Evol
450		12 :240–253.
451	25.	Reis-Cunha JL, de Oliveira Mendes TA, de Almeida Lourdes R, Rodrigues
452		dos Santos Ribeiro D, Machado-de-Avila RA, de Oliveira Tavares M,
453		Silveira Lemos D, Jácome Câmara AC, Chavez Olórtegui C, de Lana M, da
454		Cunha Galvão LM, Toshio Fujiwara R, Castanheira Bartholomeu D. 2014.

455		Genome-wide screening and identification of new Trypanosoma cruzi antigens
456		with potential application for chronic Chagas disease diagnosis. PLoS One
457		9 :e106304.
458	26.	Praast G, Herzogenrath J, Bernhardt S, Christ H, Sickinger E. 2011.
459		Evaluation of the Abbott ARCHITECT Chagas prototype assay. Diagn Microbiol
460		Infect Dis 69 :74–81.
461	27.	Iborra-Bendicho MA, Albert-Hernández M, Márquez-Contreras C, Segovia-
462		Hernández M. 2012. ARCHITECT Chagas®: una nueva herramienta
463		diagnóstica en la enfermedad de Chagas. Enferm Infecc Microbiol Clin 30:463-
464		465.
465	28.	Holguín A, Norman F, Martín L, Mateos ML, Chacón J, López-Vélez R,
466		Pérez-Molina JA. 2013. Dried blood as an alternative to plasma or serum for
467		Trypanosoma cruzi IgG detection in screening programs. Clin Vaccine Immunol
468		20 :1197–1202.
469	29.	Riera C, Vergés M, López-Chejade P, Piron M, Gascón J, Gállego M, Portús
470		M. 2009. Desarrollo y evaluación de una técnica ELISA con antígeno crudo de
471		Trypanosoma cruzi para el diagnóstico de la Enfermedad de Chagas. Enf Emerg
472		11:22–29.
473	30.	Chang CD, Cheng KY, Jiang LX, Salbilla VA, Haller AS, Yem AW, Bryant
474		JD, Kirchhoff LV, Leiby DA, Schochetman G, Shah DO. 2006. Evaluation of
475		a prototype Trypanosoma cruzi antibody assay with recombinant antigens on a
476		fully automated chemiluminescence analyzer for blood donor screening.
477		Transfusion 46 :1737–1744.
478	31.	Cheng KY, Chang CD, Salbilla VA, Kirchhoff LV, Leiby DA, Schochetman
479		G, Shah DO. 2007. Immunoblot assay using recombinant antigens as a

Journal of Clinical Microbiology

480		supplemental test to confirm the presence of antibodies to Trypanosoma cruzi.
481		Clin Vaccine Immunol 14:355–361.
482	32.	TDR Diagnostics Evaluation Expert Panel, Banoo S, Bell D, Bossuyt P,
483		Herring A, Mabey D, Poole F, Smith PG, Sriram N, Wongsrichanalai C,
484		Linke R, O'Brien R, Perkins M, Cunningham J, Matsoso P, Nathanson CM,
485		Olliaro P, Peeling RW, Ramsay A. 2008. Evaluation of diagnostic tests for
486		infectious diseases: general principles. Nat Rev Microbiol 8 Suppl 12:S17-S29.
487	33.	Izquierdo L, Marques AF, Gállego M, Sanz S, Tebar S, Riera C, Quintó L,
488		Aldasoro E, Almeida IC, Gascon J. 2013. Evaluation of a chemiluminescent
489		enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma cruzi
490		infection in a nonendemic setting. Mem Inst Oswaldo Cruz 108:928-931.
491	34.	Rodríguez-Cortés A, Ojeda A, Francino O, López-Fuertes L, Timón M,
492		Alberola J. 2010. Leishmania infection: laboratory diagnosing in the absence of
493		a "gold standard". Am J Trop Med Hyg 82:251–256.
494	35.	Youden WJ. 1950. Index for rating diagnostic tests. Cancer 3:32–35.
495	36.	Cohen J. 1960. A coefficient of agreement for nominal scales. Psychol Meas
496		20 :37–46.
497	37.	Landis JR, Koch GG. 1977. The measurement of observer agreement for
498		categorical data. Biometrics 33 :159–174.
499	38.	Bern C, Montgomery SP. 2009. An estimate of the burden of Chagas disease in
500		the United States. Clin Infect Dis 49:e52–e54.
501	39.	Herrador Z, Rivas E, Gherasim A, Gomez-Barroso D, García J, Benito A,
502		Aparicio P. 2015. Using hospital discharge database to characterize Chagas
503		disease evolution in Spain: there is a need for a systematic approach towards
504		disease detection and control. PLoS Negl Trop Dis 9:e0003710.

505	40.	Muñoz J, Gómez i Prat J, Gállego M, Gimeno F, Treviño B, López-Chejade
506		P, Ribera O, Molina L, Sanz S, Pinazo MJ, Riera C, Posada EJ, Sanz G,
507		Portús M, Gascon J. 2009. Clinical profile of <i>Trypanosoma cruzi</i> infection in a
508		non-endemic setting: immigration and Chagas disease in Barcelona (Spain). Acta
509		Trop 111 :51–55.
510	41.	Muñoz J, Coll O, Juncosa T, Vergés M, del Pino M, Fumado V, Bosch J,
511		Posada EJ, Hernandez S, Fisa R, Boguña JM, Gállego M, Sanz S, Portús M,
512		Gascón J. 2009. Prevalence and vertical transmission of Trypanosoma cruzi
513		infection among pregnant Latin American women attending 2 maternity clinics in
514		Barcelona, Spain. Clin Infect Dis 48:1736–1740.
515	42.	Riera C, Guarro A, El Kassab H, Jorba JM, Castro M, Angrill R, Gállego
516		M, Fisa R, Martin C, Lobato A, Portús M. 2006. Congenital transmission of
517		Trypanosoma cruzi in Europe (Spain): a case report. Am J Trop Med Hyg
518		75 :1078–1081.
519	43.	Ferreira AW, Belem ZR, Lemos EA, Reed SG, Campos-Neto A. 2001.
520		Enzyme-linked immunosorbent assay for serological diagnosis of Chagas'
521		disease employing a Trypanosoma cruzi recombinant antigen that consists of four
522		different peptides. J Clin Microbiol 39 :4390–4395.
523	44.	Houghton RL, Benson DR, Reynolds LD, McNeill PD, Sleath PR, Lodes MJ,
524		Skeiky YAW, Leiby DA, Badaro R, Reed SG. 1999. A multi-epitope synthetic
525		peptide and recombinant protein for the detection of antibodies to Trypanosoma
526		cruzi in radioimmunoprecipitation-confirmed and consensus-positive sera. J
527		Infect Dis 179 :1226–1234.
528	45.	Da Silveira JF, Umezawa ES, Luquetti AO. 2001. Chagas disease:
529		recombinant Trypanosoma cruzi antigens for serological diagnosis. Trends

530		Parasitol 17:286–291.
531	46.	Frasch ACC, Cazzulo JJ, Åslund L, Pettersson U. 1991. Comparison of genes
532		encoding Trypanosoma cruzi antigens. Parasitol Today 7:148-151.
533	47.	Berrizbeitia M, Ndao M, Bubis J, Gottschalk M, Aché A, Lacouture S,
534		Medina M, Ward BJ. 2006. Purified excreted-secreted antigens from
535		Trypanosoma cruzi trypomastigotes as tools for diagnosis of Chagas' disease. J
536		Clin Microbiol 44 :291–296.
537	48.	Umezawa ES, Bastos SF, Coura JR, Levin MJ, Gonzalez A, Rangel-Aldao R,
538		Zingales B, Luquetti AO, da Silveira JF. 2003. An improved serodiagnostic
539		test for Chagas' disease employing a mixture of Trypanosoma cruzi recombinant
540		antigens. Transfusion 43 :91–97.
541	49.	Umezawa ES, Luquetti AO, Levitus G, Ponce C, Ponce E, Henriquez D,
542		Revollo S, Espinoza B, Sousa O, Khan B, da Silveira JF. 2004. Serodiagnosis
543		of chronic and acute Chagas' disease with Trypanosoma cruzi recombinant
544		proteins: results of a collaborative study in six Latin American countries. J Clin
545		Microbiol 42 :449–452.
546	50.	Faraudo S, López N, Canela B, Guimarães A, Sáez-Alquezar A. 2015.
547		Evaluation in Brazil of the new Bio-Flash® Chagas assay on Biokit's Bio-Flash®
548		analyzer. Rep Esp Salud Pública 2015:65-66. Oral communication presented at
549		XI Workshop on Chagas disease (13 th March 2015).
550		http://www.isglobal.org/documents/10179/3408669/Revista+Española+de+Salud
		+Publica XI+Taller+de+Chagas.pdf/0dacece8-dda0-4533-a76e-986703f696e5.
551		$+1$ uonca_A1+1 and $+u$ e+Chagas.pul/buaceceo-uuab-4555-a/be-980/051090e5.
551 552		Accessed January 19, 2016.
	51.	

555		diagnosis of active Trypanosoma cruzi infection. Transfusion 37 :850–857.
556	52.	De Marchi CR, Di Noia JM, Frasch ACC, Amato Neto V, Almeida IC,
557		Buscaglia CA. 2011. Evaluation of a recombinant Trypanosoma cruzi mucin-like
558		antigen for serodiagnosis of Chagas' disease. Clin Vaccine Immunol 18:1850-
559		1855.
560	53.	Nouvellet P, Cucunubá ZM, Gourbière S. 2015. Ecology, evolution and
561		control of Chagas disease: a century of neglected modelling and a promising
562		future. Adv Parasitol 87:135–191.
563	54.	Generalitat de Catalunya. 2010. Protocolo de cribado y diagnóstico de la
564		enfermedad de Chagas en mujeres embarazadas latinoamericanas y sus bebés.
565		Barcelona: Departament de Salud, Generalitat de Catalunya.
566		http://canalsalut.gencat.cat/web/.content/home_canal_salut/professionals/temes_d
567		e_salut/chagas/documents/arxius/chagas_espanyol.pdf. Accessed December 11,
568		2015.
569	55.	Basile L, Oliveira I, Ciruela P, Plasencia A, Working Group For Developing
570		The Catalonian Screening Programme For Congenital Transmission Of
571		Chagas Disease. 2011. The current screening programme for congenital
572		transmission of Chagas disease in Catalonia, Spain. Euro Surveill 16:pii=19972.
573	56.	Albajar-Viñas P, Jannin J. 2011. The hidden Chagas disease burden in Europe.
574		Euro Surveill 16:pii=19975.
575	57.	Requena-Méndez A, Albajar-Viñas P, Angheben A, Chiodini P, Gascón J,
576		Muñoz J. 2014. Health policies to control Chagas disease transmission in
577		European countries. PLoS Negl Trop Dis 8:e3245.
578	58.	Bonney KM. 2014. Chagas disease in the 21st century: a public health success or
579		an emerging threat? Parasite 21 :11.

580	59.	Sicuri E, Muñoz J, Pinazo MJ, Posada E, Sanchez J, Alonso PL, Gascon J.
581		2011. Economic evaluation of Chagas disease screening of pregnant Latin
582		American women and of their infants in a non endemic area. Acta Trop 118:110-
583		117.
584	60.	Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. 2013. Global economic burden of
585		Chagas disease: a computational simulation model. Lancet Infect Dis 13:342-8.
586	61.	Ramsey JM, Elizondo-Cano M, Sanchez-González G, Peña-Nieves A,
587		Figueroa-Lara A. 2014. Opportunity cost for early treatment of Chagas disease
588		in Mexico. PLoS Negl Trop Dis 8:e2776.
589	62.	Imaz-Iglesia I, Miguel LG-S, Ayala-Morillas LE, García-Pérez L, González-
590		Enríquez J, Blasco-Hernández T, Martín-Águeda MB, Sarría-Santamera A.
591		2015. Economic evaluation of Chagas disease screening in Spain. Acta Trop
592		148 :77–88.
593	63.	63rd World Health Assembly. 2010. WHA63.20 Chagas disease: control and
594		elimination.
595		http://www.who.int/neglected_diseases/mediacentre/WHA_63.20_Eng.pdf.
596		Accessed December 11, 2015.
597	64.	Navarro M, Navaza B, Guionnet A, López-Vélez R. 2012. Chagas disease in
598		Spain: need for further public health measures. PLoS Negl Trop Dis 6:e1962.
599	65.	Basile L, Jansa JM, Carlier Y, Salamanca DD, Angheben A, Bartoloni A,
600		Seixas J, Van Gool T, Canavate C, Flores-Chavez M, Jackson Y, Chiodini
601		PL, Albajar-Vinas P, Working Group On Chagas Disease. 2011. Chagas
602		disease in European countries: the challenge of a surveillance system. Euro
603		Surveill 16 :pii=19968.
604	66.	Pérez-Molina JA, Perez AM, Norman FF, Monge-Maillo B, López-Vélez R.

605	2015. Old and new challenges in Chagas disease. Lancet Infect Dis 15:1347-
606	1356.
607	
608	

609 TABLES

610 Table 1. Overview of the results obtained with the Architect Chagas assay for the

611 four panels of sera studied.

		Pre-characterized sera			Other infections	Total
		Panel I	Panel II	Panel III	Panel IV	_
		(n=107)	(n=125)	(n=12)	(n=71)	(n=315)
CMIA	Positive	107	1	1	5	114
	Negative	0	124	10	66	200
	Grey zone	0	0	1	0	1
	Total	107	125	12	71	315

JCM

Measure	Result	95% CI
	(numerator/denomina	tor)
Sensitivity (%)	100 (108/108)	99.54-100
Specificity (%)	97.56 (200/205)	95.21-99.92
Validity index (%)	98.40 (308/313)	96.85-99.95
PPV (%)	95.58 (108/113)	91.34-99.81
NPV (%)	100 (200/200)	99.75-100
LR+	41.00	17.25-97.45
LR-	-	-
	0.98	0.95-1
	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence		dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV
95% CI, 95% confidence	e interval; PPV, positive pre	dictive value; NPV

Table 2. Measures of diagnostic accuracy of the Architect Chagas assay results.

FP sera	Architect Chagas	Other infections
	(S/CO)	
1	2.22	Unknown
2	1.83	Leishmaniasis
3	4.57	Leishmaniasis
4	4.09	Leishmaniasis
5	3.21	Leishmaniasis
6	2.40	Leishmaniasis

Table 3. False positive (FP) serum results of the Architect Chagas assay (n = 6).

646 S/CO, sample relative light units/cut-off value.

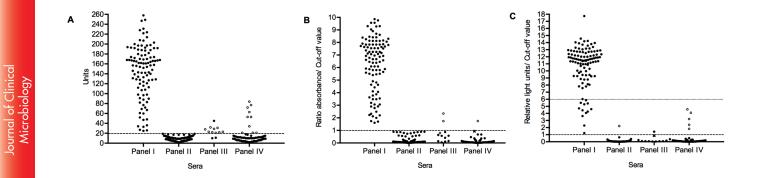
647

648 FIGURE LEGEND

649 Figure 1. Overall serum value distribution of ELISAc (A), ELISAr (B) and

650 Architect Chagas (C). Sera from panel I (samples from chronic chagasic seropositive

patients, n = 107), panel II (samples from non-chagasic patients, n = 125), panel III


652 (samples with discrepant serological results, n = 12) and panel IV (samples from

653 patients with other infections, n = 71) are represented. Full circles (\bullet) indicate true

654 positive and negative results, empty circles (**O**) indicate false positive and negative

results, and crosses (\mathbf{X}) represent results in the grey zone. Dashed lines represent the

- 656 cut-off value established for each test: 20 units for ELISAc (A), 1 absorbance/ cut-off
- 657 value for ELISAr (B) and 1 relative light unit/ cut-off value for Architect Chagas (C).
- 658 Dotted line in C indicates the point of 6 relative light units/ cut-off value in the Y-axis.

JCM