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ac and dc magnetic susceptibility as a function of frequency, magnetic field, and temperature have
been studied in polycrystalline BaCogTisO,s. This oxide displays all the common features of spin-glass-
like behavior. dc magnetic susceptibility at low fields shows a sharp peak at ca. 13.6 K, which signals
the onset of irreversibility between the zero-field-cooled and field-cooled (FC) processes. Isothermal
magnetization curves obtained from FC data have been fitted in terms of odd powers of (xoH ). The first
two coefficients of the nonlinear susceptibility increase by more than three orders of magnitude when ap-
proaching T, from above, thus indicating the occurrence of an equilibrium phase transition. Static scal-
ing analysis of the nonlinear susceptibility leads to the following set of critical parameters: §=7.910.3,
¢=5.710.5, T,=13.2110.05. The reliability of this set has been checked by reference to the asymptotic
behavior of the scaling function. The unusually high values of the 8 and ¢ exponents could be related to
some degree of reduction of the spin dimensionality, because of the planar contribution to the anisotropy
of Co®* ions when located at octahedral sites. Dynamic scaling has been developed from ac susceptibili-
ty data assuming power-law divergence of the relaxation time, yielding the following set of parameters
(zv=8.0£0.5, =0.751+0.10, T,=13.20+0.05). The value of zv has also been confirmed by studying
the dependence of the freezing temperature on frequency. The B, 8, ¢ values roughly accomplish the
scaling relation B=¢/8. Thermoremanent-magnetization data show the common aging phenomena in
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disordered magnetic systems, as expected in spin glasses.

I. INTRODUCTION

In the last ten years, progress has been made in
theoretical and numerical simulation work!? aimed at
elucidating whether a spin-glass system undergoes a true
equilibrium phase transition, although one question still
remains unanswered: do experimental systems behave as
theoretical models propose, and if so, does a true equilib-
rium phase transition occur?, or, on the contrary, can the
spin-glass syndrome be explained only as a consequence
of progressive freezing induced by magnetic frustration?
As a consequence, there is still a general need to test criti-
cal theories in experimental systems with spin-glass-like
behavior. In the context of this issue, we present a com-
plete characterization of the critical behavior of a new in-
sulating magnetic system with the typical spin-glass
features.

Concerning three-dimensional (3D) Heisenberg spin-
glass systems, a great number of experimental results are
compatible with a phase transition at a finite tempera-
ture, characterized by a set of critical exponents® that, in
spite of their variations from one compound to another,
may be considered as universal, taking into account ex-
perimental errors. Nevertheless, some controversy still
surrounds lower spin and lattice dimensionality. For ex-
ample, Gunnarsson et al.* report a different set of critical
exponents in a frustrated magnetic system with uniaxial
anisotropy. In this framework, we show that these
differences are also observed in other magnetic frustrated
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systems with some degree of reduction of the spin dimen-
sionality, such as on the BaCo4Ti¢O,, oxide.

BaCo4TigO,y may be regarded as the compound ob-
tained by total substitution of Fe ions by Co+Ti ions in
the precursor M-type barium ferrite BaFe;;0,9. In the
former oxide, the magnetic frustration leading to the
spin-glass-like behavior arises from the cationic distribu-
tion of the doping cations among the five metallic crystal-
lographic sublattices of the M-type structure. Nonmag-
netic Ti*' cations break the superexchange paths be-
tween magnetic Co®* cations, making the collinear uni-
axial magnetic structure of the pure phase unstable.

Previous neutron-powder-diffraction  experiments®
showed that the cationic distribution is the following: 2a
(83% Ti and 17% Co); 4e (20% Ti and 80% Co); 4f v
(0% Ti and 100% Co); 4fy; (83% Ti and 17% Co); 12k
(55% Ti and 45% Co), where 2a, 4fv;, and 12k are octa-
hedral sublattices, 4fy is a tetrahedral sublattice, and 4e
is a pseudotetrahedral site. The planar anisotropy of
Co?™ cations when located in octahedral sites® suggests a
degree of reduction of the spin dimensionality, due to the
considerable amount of Co?™ in this coordination, in our
compound. We should remark that, although the pure
precursor phase is always the same, other doping
schemes of the M-type ferrites give rise to very different
magnetic behavior, as a consequence of the hierarchy of
preferences and the nature of the doping cations among
the metallic sublattices. For example, in SrCrzgGa,Oq
the magnetic Cr3" enters only in octahedral sites, leading
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to a highly frustrated antiferromagnetic system with a set
of coupled Kagomé-type magnetic lattices.’

The organization of this paper is as follows: After a
brief introduction of experimental techniques, we present
the results of the dc susceptibility experiments, from
which the nonlinear part of the susceptibility is obtained
and analyzed in the context of critical theories. In the
third part, dynamic scaling analysis of the ac susceptibili-
ty in the range 5-1000 Hz, is performed. The value
found for the zv exponent is compared with that deduced
from the dependence of the freezing temperature on the
measuring frequency. Finally, thermoremanent magneti-
zation is studied as a function of time, showing the
characteristic aging phenomena previously observed in
other spin-glass systems. Results are compared with oth-
er spin-glass systems.

II. EXPERIMENTAL

Polycrystalline BaCogTigO,; was synthesized by high-
temperature solid-state reactions of stoichiometric
BaCo;, TiO,, and Co;0, mixtures. A detailed explana-
tion of the thermal procedure is given in Ref. 5. The
phase unicity of the final sample was verified from both
x-ray and neutron diffraction. All reflections were in-
dexed on the basis of the magnetoplumbite-type structure
(structural group P6/mmc) and no extra peak was ob-
served with respect to the precursor phase
BaFe,,_,,Co,Ti 0,

ac susceptibility measurements as a function of both
frequency (5<w<1000 Hz) and temperature
(4.2 <T <300 K) were recorded with an ac Lake-Shore
susceptometer in zero dc magnetic field and an ac mag-
netic field of 5 Oe. dc magnetic susceptibility and
remanent magnetization measurements were carried out
using a commercial superconducting quantum interfer-
ence device (SQUID) magnetometer equipped with
second-order gradiometer pickup coils in applied magnet-
ic fields ranging from 1 to 50 kOe and temperatures be-
tween 4.2 K and room temperature.

The real and imaginary parts of the ac susceptibility
were used to analyze the dynamic critical behavior.® dc
susceptibility was measured following both the zero-
field-cooled (ZFC) and field-colled (FC) processes, and the
data obtained from the latter procedure were used to per-
form the static critical analysis. The time dependence of
the thermoremanent magnetization was recorded after a
FC process. A more detailed description of the relaxa-
tion measuring method is given in Ref. 9.

III. RESULTS AND DISCUSSION
A. dc susceptibility

In Fig. 1 we show the reciprocal low-field susceptibility
(ca. 1 Oe) from 4.2 K up to room temperature. In the
high-temperature regime (T > 100 K) the magnetic sus-
ceptibility displays typical Curie-Weiss behavior, from
which a paramagnetic moment of 4.67uz and a Curie
temperature © = —80 K are obtained. The value of the
magnetic moment is within the theoretical 3.87up spin-
only high-spin value of Co?>* ions when located in
tetrahedral sites ((L ) =0) and the 5.2up value usually
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FIG. 1. Reciprocal low-field susceptibility (ca. 1 Oe) as a
function of the temperature. The solid line represents high-

temperature asymptotic Curie-Weiss behavior.

observed when located in octahedral sites ({L )70).1°
The negative sign of the Curie temperature suggests that
the dominant interactions between the Co?' magnetic
moments are antiferromagnetic. Furthermore, a marked
deviation from the linearity occurs below ca. 100 K, thus
signaling the appearance of magnetic correlations among
the Co?" magnetic moments. This deviation increases
with decreasing temperature, and a sharp peak appears at
ca. 13.6510.05 K, which is associated with freezing phe-
nomena of the Co?™ magnetic moments. Below this tem-
perature, the magnetic irreversibility starts and the be-
havior of the sample depends on its magnetic history,
leading to the differences observed in ZFC and FC sus-
ceptibility shown in Fig. 2. These features are the typical
fingerprints of the spin-glass syndrome.

On the other hand, it is well known that the precursor
compound, the pure M-type barium ferrite BaFe,,0,,, is
ferromagnetic and the magnetic structure is uniaxial col-
linear to the ¢ axis of the crystallographic structure.!!
Although the collinear structure is stable, all the dom-
inant magnetic interactions are antiferromagnetic in such
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FIG. 2. Temperature dependence of the magnetization fol-
lowing a ZFC-FC process with a magnetic field of 7 Oe.
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a way that none of them can be fulfilled simultaneously.'?
Thus, the cationic substitution rapidly alters the critical
equilibrium of the superexchange paths that make the
magnetic structure stable, which explains the appearance
of new noncollinear magnetic structures in doped fer-
rites.!> In our case, the origin of the frustration in the
BaCoTigO,9 compound may be related to the random
distribution of paramagnetic Co?™ ions and diamagnetic
Ti** ions among the five metallic sublattices of the M-
type crystallographic structure,’ inhibiting the appear-
ance of long-range magnetic correlations. The topologi-
cal frustration of the magnetic structure is measured by
the ratio © /T, which in our compound is 6.1, being a
typical value in spin-glass systems. '

To determine the nature of the freezing phenomenon
that takes place at about 13.65 K we have studied the
dependence of the FC magnetic susceptibility y (=M /H)
as a function of both temperature and applied magnetic
field from which we derive the static critical behavior. In
Fig. 3, x is plotted against temperature between 10 and
30 K, with the applied magnetic field spanning from 10 to
40 kOe. From this figure we observe that the peak asso-
ciated with the freezing phenomena broadens and be-
comes rounded as the field increases, due to the nonlinear
effects.

However, the nonlinear contributions to the suscepti-
bility are much more evident in Fig. 4, where susceptibili-
ty data at selected temperatures are represented as a
function of the applied magnetic field. It is evident from
this figure that the nonlinear contribution to the suscepti-
bility increases substantially as the freezing temperature
is approached from above. Therefore, the nonlinear con-
tributions close to T, are substantial even for fields as low
as a few oersteds and so their effects must be taken into
account in order to determine the correct linear suscepti-
bility, as has been previously reported in other spin-glass
systems.!>!® It is worth pointing out that the total sus-
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FIG. 3. Field-cooled magnetic susceptibility corresponding
to different applied magnetic fields. The solid line corresponds
to the y,, susceptibility obtained by fitting FC data to Eq. (1).
Symbols are as follows: (O, 10 Oe), (O, 120 Oe), (A, 300 Oe),
(0, 500 Oe), (¥ 1 kOe), (+, 1.5 kOe), (X, 2 kOe), (x, 3 kOe),
(@, 5 kOe), (M, 7.5 kOe), (A, 10 kOe), (7, 20 kOe), (@, 30 kOe),
(%), 40 kOe).
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FIG. 4. Magnetic susceptibility at selected temperatures as a
function of the logarithm of magnetic field.

ceptibility is temperature independent for fields higher
than ca. 40 kOe signaling the saturation of the nonlinear
part of the susceptibility.

B. Nonliner analysis and power-law fits

In order to determine whether or not a canonical spin-
glass transition takes place at T, we have analyzed the
nonlinear contribution to the magnetic susceptibility by
using the well-known development of the magnetization
above T in terms of the odd powers of the field,!” which
can be written in the following form:

M =xoH—b;(xoH ) +bs(xcH)]— -+ , 1

where the Y, coefficient is the linear susceptibility and the
remaining coefficients stand for the nonlinear part. The
least-squares fit of the isothermal magnetization curves
obtained from the FC data to Eq. (1), shown in Fig. 3, al-
lows the determination of the temperature dependence of
the X, b3, and bs coefficients. Nevertheless, higher-
order terms have been used in order to improve the
fitting of the experimental data for temperatures close to
T; only the error bars of the first three coefficients were
small enough to be used to study its temperature depen-
dence. The temperature variation of these coefficients is
shown in Fig. 5. Both b3 and b5 coefficients show a very
strong upturn as T, is approached from above, increasing
their values by more than three orders of magnitude.
This is often taken as proof of the existence of a true
spin-glass transition.!” The behavior of the reciprocal
linear susceptibility is also shown in the inset of Fig. 5.
Curie-Weiss behavior is observed above T'=18 K, with a
Curie temperature of ©=8=+1 K and a paramagnetic mo-
ment of p=2.71+0.2up, which is smaller than the value
observed in the high-temperature paramagnetic regime.
This indicates that an uncorrelated structure of frozen
ferrimagnetic clusters takes place in the temperature
range immediately above T;. The value obtained for the
Curie temperature indicates remaining ferromagnetic in-
teractions among the frozen ferrimagnetic clusters.
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FIG. 5. Plot of the logarithm of the two first coefficients, b,
and bs, of the expansion of the magnetization in odd powers of
(Xo,H) as a function of temperature. The reciprocal of the sus-
ceptibility at zero field, X,, is shown in the inset. Straight lines
show the regions in which effective Curie-Weiss law are obeyed.

C. Scaling analysis of the nonlinear susceptibility

The most relevant test of the critical behavior of a
spin-glass system is obtained by measuring and analyzing
the nonlinear part of the magnetic susceptibility defined
by the equation

Xa(H, T)=xo(T)—M(H,T)/H , (2)

where Y| is the linear susceptibility obtained by fitting ex-
perimental data to Eq. (1) (see Fig. 3). It is expected that
Xu scales following the single-parameter relation'®

XalH, T)<H?*f(e/H??) , (3)

where e=(T —T,)/T,, 8 and ¢ are the critical exponents
that rule the spin-glass transition, T, is the critical tem-
perature that signals the phase transition, and f(x) is an
arbitrary scaling function with the following asymptotic
behavior

f(x)=const, x—0 @
fx)=x7T7Y x—>w.

The exponent & can be determined by the following
equation:

an(fI’Tc)(Iflz/8 > (5)

which represents the asymptotic behavior of the critical
isotherm for x tending to 0. In the inset of Fig. 6 we
show the log-log plot of x,; as a function of H. A § value
of 7.8+0.3 is obtained from the slope of the linear re-
gime. Using this value of § the best data collapsing were
obtained by varying the values of T, and ¢ in Eq. (3). In
Fig. 6 we show the best scaling of the experimental data
Xu(H, T), which has been obtained with the following set
of critical exponents: 6§=7.91+0.3, ¢=5.7+0.5, and
T,=13.21£0.05. Only data above T, with applied fields
higher than 2 kOe have been used in this analysis.

The reliability of the set of critical exponents reported
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FIG. 6. Scaling plot of the nonlinear part of the susceptibili-
ty, Xn- Symbols correspond to the following values of the mag-
netic field: (0, 1.5 kOe, (0, 2 kOe), (A, 3 kOe), (O, 5 kOe), (%,
7.5 kOe), (+, 10 kOe), (X, 20 kOe), (¢, 30 kOe), («, 40 kOe).
The inset shows the log-log plot of the y, data, corresponding
to the temperature 13.25 K, as a function of the magnetic field.
The straight line stands for the asymptotic behavior.

before can be checked by studying the asymptotic behav-
ior of the scaling function in the limits of x —0 and
x—co. In the limit of large x with constant magnetic
field (i.e., at small fields or for large values of the reduced
temperature, €), an asymptotic behavior of the form x ~7
is expected, ¥ being the susceptibility exponent related to
6 and ¢ exponents through the scaling relation
Y=¢(1—1/8). From the data in Fig. 6 we obtain an
asymptotic slope of —2y /¢=—1.6£0.2, from which a
value of ¥ =4.610.4 is obtained, which is consistent with
that obtained from the above scaling relation
(y=4.910.4). On the other hand, in the x —0 limit, the
constant behavior is observed as predicted from the
asymptotic behavior of the scaling function.

The set of critical exponents we have obtained are
significantly higher than those reported for other experi-
mental spin-glass systems, especially those of the insulat-
ing type, for which typical values are §=4%0.5 and
$=3.5+0.5.1%20 Nevertheless, some numerical results for
the three-dimensional infinite-range Ising model suggest
8=7.4 and ¢=3.7.! A recent paper by Gunnarsson
et al* also reports a high value for the & exponent
(6=8.4%1.5) in the short-range Ising spin-glass system
Fey sMn, sTiO;, in better agreement with our results. It
should be noted that our results are also similar to those
proposed for the crossover behavior corresponding to a
3D-2D system.?!

D. Dynamic and analysis of the ac susceptibility

The study of the dynamical critical properties of this
spin-glass system is very appealing from two points of
view: on one had, there is still a general need to test
dynamical theories in spin glasses, and, on the other
hand, it is also interesting to determine whether unusual
values of the 8 and ¢ exponents are confirmed with this
analysis.
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In-phase ac magnetic susceptibility shows a peak at
low magnetic fields (see Fig. 7), which defines the spin-
glass temperature, T/(w), which is not necessarily the
phase transition temperature 7,. This temperature
strongly depends on frequency of measurement (almost
1.5 K from 10 Hz to 1 kHz). However, the relative varia-
tion of T, per frequency decade AT,/(T,;Alnw) is
2.5X1072, whlch is intermediate between those typically
reported for metallic spin glasses (0.7 X107 %) (Ref. 22)
and for the insulator Eug ¢Sty ,S (5X 1072).2® This varia-
tion is very similar to that observed in the semimagnetic
semiconductor system Cd,_,Mn, Te (in particular for
x=0.4).%

By taking the temperature corresponding to the cusp
of the in-phase ac susceptibility, 7(w), as the onset of
strong irreversibility for each measuring time t=1/0 (©
is the frequency of the ac magnetic field) and studying its
variation with the measuring frequency, it is possible to
check the validity of the usual critical slowing down asso-
ciated with a true phase transition for this system. If we
assume an equilibrium phase transition, the divergence of
the relaxation time 7 as the critical temperature is ap-
proached from above is given by?

re[THw)/T,—1]7%", (6)

where v is the critical exponent for the correlation length
&, z is the dynamic exponent relating £ and 7, and T, is
the phase transition temperature which has been set to
the value obtained in the critical scaling of the nonlinear
susceptibility. So, if the measuring frequency as a func-
tion of the reduced freezing temperature (T,/T,—1) is
represented in a log-log plot, the points are expected to
be aligned over a straight line whose slope is the zv ex-
ponent. This kind of plot for our data, giving a zv value
of 8.7, is shown in the inset of Fig. 8.

The definition of T, (w) used above is not accurate
since it does not define a correct (H,T) line for a specific
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FIG. 7. In-phase ac susceptibility as a function of the tem-
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perature. The solid line represents equilibrium susceptibility
obtained by fitting the FC data to Eq. (1). Symbols are as fol-
lows: (0, 8 Hz), (O, 16 Hz), (A, 25 Hz), (0, 33 Hz), (¥ 57 Hz),
(+, 74 Hz), (X, 90 Hz), («, 111 Hz), (¥, 153 Hz), (©, 222 Hz),
(@, 333 Hz), (W, 400 Hz), (A, 667 Hz), (3¢, 1000 Hz).
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FIG. 8. Power-law scaling of Ay'(T,w) data according to Eq.
(8). Symbols are as follows: (0, 8 Hz), (O, 16 Hz), (A, 33 Hz),
(0, 74 Hz), (%, 153 Hz), (+, 333 Ha2), (+, 667 Hz), (X, 1000
Hz). In the inset is represented the measuring frequency, w, as a
function of the reduced freezing temperature, T,/T,-1, in a
log-log plot. Open circles represent the freezing temperature
determined as the cusp of the in-phase ac susceptibility, while
squares correspond to the freezing temperature determined as
that at which |x"’| /x’ rise a constant arbitrary value.

response time 7, as has previously been pointed out by
Bontemps et al.?® It is clear that at a given measuring
frequency o, irreversible effects will appear at a tempera-
ture T;(w), deﬁned by the onset of the out-of-phase sus-
ceptibility x", Wthh is higher than T/(w). It has previ-
ously been shown?$ that the critical dynamics of the sys-
tem are better described by T;(w). Following the cri-
terion proposed by Bontemps et al.?® T,(w) may be
defined at a constant response time 7 for each observation
time t (t=1/w), as the temperature at which |y"|/x’ is
equal to a small arbitrary constant. In our case this con-
stant value has been chosen to be 1072 (this value must
be greater than the noise-signal ratio). The dependence
on the measuring frequency of the T;(w) obtained in this
way is shown in the inset of Fig. 8. From these data we
have obtained a value of the zv exponent equal to 7.4,
which is slightly smaller than that obtained from T;(w).
The same disagreement between the results of these two
methods of finding zv has been previously observed in
other spin-glass systems,?* and it may be a consequence
of the fact that T,(w) does not define a correct (H,T)
line.

We have also studied the dynamic scaling of the quan-
tity

A =[Xeg! T)—X(T,0) I T) , )

where the equilibrium susceptibility at zero frequency
and zero magnetic field, ch( T), has been assumed to be
equal to the linear susceptibility, xo(7T), deduced from the
power-law fits of the isothermal magnetization curves to
Eq. (1). In Fig. 7, the experimental x'(T,) data and the
linear susceptibility x(7) are simultaneously represent-
ed. It is clear from this plot that as the temperature in-
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creases, the asymptotic behavior of the y'(T,w) data per-
fectly matches the x(T) curve (solid line), confirming the
validity of our assumption. In the scaling region, where
o—0 and T—T,, the quantity Ay’ can be written in the
following form:

Ay'=€PG(we ™) , (8)

where S is the exponent of the order parameter, G (x) the
scaling function, and € the reduced temperature defined
before. In Fig. 8 we show the result obtained using the
dynamic scaling law (8) for the full data Ay'(T,w) at
different frequencies and temperatures. The best data
collapsing correspond to the set of values zv=8.010.5,
B=0.75£0.10, and T,=13.2010.05, which are in very
good agreement, respectively, with the zv value deduced
from the study of T(w) and T;(w), the critical tempera-
ture found in the static critical analysis, and even with
the value of B predicted from the scaling relation
B=¢/8=0.72 (using the values of ¢ and & reduced from
the static analysis). In fact, these values of the dynamic
exponents compare well with those previously published
for some semimagnetic semiconductor system?’ and also
with results of numerical simulation corresponding to the
case of three-dimensional spin glasses with short-range in-
teractions.”® We should remark that in a previous work®
we had carried out the dynamic scaling analysis for
BaCo4TigO,4 using x¥"(T,w) data, obtaining a very simi-
lar set of values for the critical exponents (zv,B) and for
T,.
In the preceding analysis, it is assumed that a true
phase transition occurs at a finite temperature 7,. How-
ever, other models have been proposed that justify the
appearance of a cusp in the ¥'(T) curve. In the activated
dynamic model® the system is considered as a set of su-
perparamagnetic clusters, in which each cluster has a
given probability of overcoming the anisotropy energy
barrier. Associated with this energy barrier there is a re-
laxation time which is governed by either the Arrhenius
or the Vogel-Fulcher laws.*® In Ref. 8 we had tried to
perform the scaling analysis of ¥''(T,®) using this model
but the degree of data collapsing obtained in this way was
clearly worse. Furthermore, the values of the exponents
obtained with the cluster model did not agree with any of
the sets of exponents previously reported (for example, in
semimagnetic semiconductors®!). On the other hand, it
has been reported that a fingerprint of activated dynamic
behavior is an unusually large value of the zv exponent
(14 or larger) when data are analyzed in the scope of the
power-law scaling.?! This fact is not observed in our com-
pound, reinforcing the true phase assumption.

E. Thermoremanent magnetization as a function of time.
Aging phenomena

Thermoremanent-magnetization data as a function of
time were recorded after field cooling the sample from 50
K to a given temperature below T, at which the sample
was kept during the waiting time ¢, and the field was
finally switched off before the measurements process
started. The relaxation data were collected at 10 K (ca.
0.757T,), which is close enough to T, to reveal aging phe-
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nomena, the relaxation rate being slow enough to mea-
sure nonequilibrium magnetization even at very long
times. The order of magnitude of the maximum value of
the cooling magnetic field at which linear response is ex-
pected for this compound at temperatures close to T, can
be calculated from

(Xl T)/[b3(Tx5( D1} 2 7, =10°-10% Oe . 9)

The strength of the magnetic field used was 10 Oe, which
seems to be small enough to ensure approximate linear
response.

All the experimental My (¢) curves (see Fig. 9) show
an inflection point, when represented in a log-log plot,
roughly located at the waiting time ¢,,, which is the time
that the sample was kept at a constant temperature and
field before the relaxation measurements started. This is
the main consequence of the aging effects, since the sys-
tem has not reached equilibrium when the field is
switched off. So, as the observation time elapses, the sys-
tem continues evolving as a function of the time 7, +¢ .

Ocio, Alba, and Hammann have developed a phenome-
nological theory that allows quantitative estimation of
the relaxation parameters. In this model,
thermoremanent-magnetization data, Mz (T), are plot-
ted as a function of a effective time defined by

th!
1—p
where the exponent p must be fitted to satisfactorily su-
perimpose the data in a unique master curve which
represents the relaxation function of the system at a given
constant age. The parameter ¢, is an arbitrarily chosen
reference time (¢, =1 s) introduced to build § as a dimen-

§= [(£+2,) 7H—2,74], (10)

>
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FIG. 9. Logarithm of the thermoremanent magnetization vs
the logarithm of the observation time (in s) for different waiting
times ¢, at T=10 K. The symbols correspond to the following
values of the waiting time: (O, 480 s), (%, 1800 s), (O, 3600 s),
(0, 7200 s), (+, 14400 s), (A, 90000 s), The solid lines are cal-
culated from Eq. (11) using the values of the fitting parameters
given in the text. The inset shows the master curve as a func-
tion of the reduced time, &£ The solid line represents the fit of
the experimental data to Eq. (11). M, is an arbitrary reference
value.
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sionless variable. The master curve obtained as a func-
tion of £ can be fitted using the empirical law.

Mg (§)=Mo& %exp[ —(£/7,)' "], (11

where the sketched exponential accounts for aging phe-
nomena, while the decreasing power law is the equilibri-
um relaxation of the system.

In the inset of Fig. 9, the master curve as a function of
the reduced time & is shown in a log-log plot. The value
of u that gives good superposition of the data, corre-
sponding to different waiting times, is p=0.8310.05.
The master curve has been fitted to the empirical equa-
tion (11) and gives the following set of values for the pa-
rameters that characterize relaxation: a=0.04310.005,
7,=50%15, n=0.33+£0.05. These values are in very
good agreement with those found in other insulating
spin-glass systems measured at a comparable effective
temperature [for example, in CsNiFeF, (Ref. 32) or in the
thioespinel CdIn, ;Cr, S, (Ref. 33)]. It is evident that
those in close agreement cannot be taken as unambiguous
proof of the existence of the spin-glass state, since aging
phenomena seem to be a common feature in many other
frustrated magnetic systems. However, a true spin-glass
system must show this phenomenology among other
features which are also expected, such as those we have
reported in Sec. I A, II B, II C, and II D.

IV. CONCLUSIONS

We have studied the dynamic and static critical behav-
ior, as well as the thermoremanence as a function of time,
of the BaCo4TizO 4 oxide.

Both dynamic and static critical analyses lead us to
conclude that our system undergoes a true equilibrium
phase transition at a finite temperature T,=13.20%0.05
K. The b; and b5 coefficients of the development of the
magnetization in terms of odd powers of the field show a
strong upturn as T, is approached from above, increasing
their values by more than three orders of magnitude.
This is usually associated with the occurrence of a true
spin-glass transition. Moreover, the values of the critical
exponents deduced from both analyses are compatible
with the expected scaling relation S8=¢/8, which rein-
forces the consistency of the reported set of critical ex-
ponents. The value of the B exponent obtained from the
ac susceptibility scaling is 0.75x0. 10, while that deduced
using the ¢ and § values obtained from the dc scaling
analysis and the scaling relation mentioned before is 0.72,
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showing good agreement between them. The validity of
the set of critical exponents has also been checked by
reference to the asymptotic regimes in the critical region
and studying the dependence of the freezing temperature
on frequency. We have obtained a close agreement be-
tween the values deduced from the full data analysis and
those derived from the latter produces.

The dynamical critical exponents zv and 8 are within
the variation range of those reported in some different
kinds of spin-glass systems (metallic, short-range, sem-
imagnetic, uniaxial spin glasses, etc.) In any case, the 8
value 0.75£0.1 is somehow smaller than the expected
value in Heisenberg and Ising spin-glass cases (1.0 and
0.9, respectively). On the other hand, the zv value
8.0%0.5 is also in very good agreement with Monte Carlo
simulation results?® and renormalization-group calcula-
tions>* in Ising spin-glass systems.

Concerning static scaling, our set of experimental criti-
cal exponents are significantly higher than those reported
in the literature for the majority of 3D Heisenberg spin
glasses (6=7.910.3, ¢=5.710.5). Nevertheless, large
values of the § exponent have been also reported from nu-
merical simulation,! experimental critical analysis for a
short-range Ising spin-glass system,* and systems exhibit-
ing a 3D-2D crossover behavior.?! In our present case,
some degree of reduction of the spin dimensionality of
the Co’™ might be induced by the planar anisotropy of
these cations when located in octahedral sites. This fact
might explain the unusually high values of the & and ¢
critical exponents. Presently, we are trying to obtain
high-quality BaCoTisO,4 single crystals in order to per-
form critical analysis and so confirm the reduction of the
spin dimensionality.

We also performed® the activated scaling analysis of
the ac data in order to verify the validity of the cluster
model,? for which a true phase transition does not occur,
but the degree of data collapsing in this way was clearly
worse. Although the cluster model should not be com-
pletely ruled out as an explanation of the freezing phe-
nomena in our sample, the self-consistency of the preced-
ing analysis suggests that the spin-glass freezing is a more
consistent explanation.

We would like to remark that the thermoremanent-
magnetization data show the usual aging phenomena ob-
served in many kinds of disordered system. This cannot
be taken as proof of the existence of the spin-glass state,
although a true spin-glass system must display all these
features.
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