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The electronic structure of the wurtzite-type phase of aluminum nitride has been investigated by
means of periodic ab initio Hartree-Fock calculations. The binding energy, lattice parameters (a,c), and
the internal coordinate (u) have been calculated. All structural parameters are in excellent agreement
with the experimental data. The electronic structure and bonding in AIN are analyzed by means of
density-of-states projections and electron-density maps. The calculated values of the bulk modulus, its
pressure derivative, the optical-phonon frequencies at the center of the Brillouin zone, and the full set of
elastic constants are in good agreement with the experimental data.

INTRODUCTION

Aluminum nitride is a tetrahedrally coordinated III-V
compound which crystallizes at ambient conditions in the
hexagonal wurtzite structure.! This structure differs
from the cubic zinc-blende one adopted by some of the
IT1I-V compounds mainly in the relative positions of the
third neighbors and beyond. AIN has a large band gap
(about 6.3 V), a high thermal conductivity (up to 320
W/mK),>* and a small thermal-expansion coefficient.’
These properties make this material an attractive candi-
date for applications as a ceramic substrate in thin-film
devices. Because of its piezoelectric properties it has also
been used in thin-film microwave acoustic resonator ap-
plications.$

Although single crystals of AIN are not easily grown,
measurements of several physical properties for this com-
pound have been reported. The valence charge density,
determined from precise x-ray-diffraction experiments,’
suggests that the bonding is highly ionic. Nevertheless,
the adoption of the tetrahedrally coordinated wurtzite
structure by the compound at ambient conditions rather
than the rocksalt one, indicates that some degree of co-
valency is present. This is also consistent with the frac-
ture toughness exhibited by AIN, which may be related
to its partially covalent nature. Spectroscopic studies in-
cluding Raman,®~ '3 infrared,’ reflectivity, and transmis-
sion spectra,'* x-ray photoemission spectroscopy (XPS),2
ultraviolet ~ photoemission  spectroscopy  (UPS),'
electron-energy-loss spectroscopy (EELS),'® and Auger
spectra'® have been reported for AIN. The material con-
stants, i.e., elastic stiffness, piezoelectricity, and permi-
tivity, also have been calculated from measured surface
acoustic wave phase velocities!” and Brillouin spectra.!!

Several band-structure calculations have been reported
for AIN using different methods. The earlier studies were
performed by Hejda and Hauptmanova,'® using the or-
thogonalized plane-wave (OPW) method, by Bloom'
with the empirical pseudopotential method, by
Kobayashi et al.?® with a semiempirical tight-binding
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calculation, and by Huang and Ching21 with the semi-ab
initio linear combination of atomic orbitals (LCAO)
method. More recently, different ab initio approaches
have been used in the study of the electronic structure of
AIN. Ching and Harmon?? performed orthogonalized
linear combination of atomic orbitals (OLCAO) calcula-
tions in the local-density approximation. The same
method also has been used for the evaluation of optical
properties for this material. > Recently, Miwa and
Fukumoto reported a local-density functional study of
the structural, electronic, and vibrational properties of
GaN and AIN. There has also been great interest in the
calculation of high-pressure properties of aluminum ni-
tride.?* Several papers reported electronic structure cal-
culations for the wurtzite and other cubic phases (rock-
salt and zinc blende) of AIN.25~%

The calculations presented in this paper were largely
motivated by the aim of testing the performance of the
periodic Hartree-Fock method in the calculation of some
properties (bulk modulus, elastic constants, and phonon
frequencies) for a system with noncubic symmetry. Spe-
cial attention is paid to the ability of different basis sets to
reproduce the experimental data.

METHODOLOGY

The calculations reported in the present work were
performed using the CRYSTAL-92 program,’® which pro-
vides self-consistent solutions to the Hartree-Fock-
Roothan equations subject to periodic boundary condi-
tions. Details of the mathematical formulation of this
method have been previously described,’! and will be
omitted here.

CRYSTAL-92 uses linear combinations of Gaussian orbit-
als to construct a localized atomic basis from which
Bloch functions are built up. As in the molecular
Hartree-Fock calculations, the results can be quite sensi-
tive to the choice of the basis set. Previous work using
this methodology has shown that the standard basis sets
used in molecular calculations must be modified for their
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TABLE I. Optimized exponents for the most diffuse Gauss-
ian functions used in the present calculations.

Basis set a, (AD ay (AD a, (N) ay (N)
6-21G 0.17 0.26

6-21G* 0.15 0.51 0.28 0.80
PS-21G 0.14 0.24

PS-21G* 0.14 0.39 0.26 0.78

use on periodic systems.’! The program can work at the
all-electron (AE) level as well as with effective core pseu-
dopotentials (PS). In this paper we test four different
basis sets. The 6-21G is an all-electron basis set with
split-valence functions. Addition of d-type polarization
functions on both atoms gives the 6-21G* basis set. We
also will examine the performance of two equivalent basis
sets, PS-21G and PS-21G*, which replace the core elec-
trons by effective core pseudopotentials. Parameters for
the Gaussian functions used in our work have been ob-
tained from previous calculations for related systems by
reoptimization of the exponents of the most diffuse func-
tions using the experimental crystal structure.’? Results
of this reoptimization procedure are shown in Table 1.

It is interesting to note here that in periodic Hartree-
Fock calculations the number of bielectronic integrals to
be evaluated, and therefore the computational cost of the
calculation, strongly depends on the exponents of the
more diffuse Gaussian functions included in the basis set.
Hence it is sometimes possible to use all-electron basis
sets with a lower computational cost than pseudopoten-
tial basis sets of the same quality. This paradoxical situa-
tion is found when comparing the time needed for calcu-
lations with the 6-21G* and the PS-21G * basis sets. The
smaller exponents for the pseudopotential basis functions,
especially on the polarization function of aluminum,
make this basis set more expensive than the all-electron
one.

Computational parameters controlling the truncation
of both the Coulomb and exchange infinite series have
been chosen to give a “good” level of accuracy defined in
the sense of Pisani, Dovesi, and Roetti.>!

RESULTS

Crystal structure. The wurtzite structure (Fig. 1) is
hexagonal, P6;mc (num. 186) space group, with both
types of atoms located at Fig. 2(b) positions.! A total of
three parameters (a, ¢, and the internal coordinate u for
one of the atoms) are needed to fully describe the struc-
ture. Table II shows results obtained from optimization
of these three values with different basis sets.

The internal coordinate u has been obtained by
evaluating the total energy as a function of u, keeping a
and c at their optimum values. The curves were fitted to
third-order polynomials with the minima indicated in
Table II. For the ‘“ideal” wurtzite structure a ¢ /a ratio
of 1.633 and an internal coordinate of 0.375 are expect-
ed.’* Deviation from this value for the case of AIN indi-
cates that the coordination of each atom is a distorted
tetrahedron with three equal bonds forming aluminum-
nitrogen layers parallel to the ab planes, and a fourth
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FIG. 1. Waurtzite-type structure of AIN. Black balls
represent aluminum atoms, white ones nitrogen atoms.

slightly longer bond in the ¢ direction.

From these data it is clear that the use of polarization
functions both in the AE and PS cases results in a con-
traction of the structure, giving parameters closer to ex-
perimental ones. This observation agrees well with previ-

0.80
™~
| T
0a0 NPT <
S 000
oo S R
-0.80
0 A L M r A H K r

FIG. 2. Electronic band structure obtained with the 6-21G*
basis set for wurtzite-type AIN.
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TABLE II. Structural properties calculated with the different basis sets used. Experimental data are
provided for comparison. Distances are indicated for the two different bonds of the structure. dj.n
refers to the three equivalent Al-N bonds while d,;y is the distance for the unique bond in the ¢ direc-

tion.

621G 6-21G* PS-21G PS-21G* Expt.
a (A) 3.135 3.117 3.123 3.101 3.110°
¢ (A) 4.986 4.982 4.988 4.975 4.980°
u 0.3832 0.3828 0.3822 0.3817 0.3821*
c/a 1.590 1.598 1.597 1.604 1.601
dan (A) 1.901 1.891 1.896 1.885 1.889
d'an (A) 1.911 1.909 1.906 1.899 1.903
BE (eV) 11.03 10.11 10.43 11.09 11.6°

?Reference 1.
YReference 34.

ously published results, which show that addition of po-
larization functions always yields a reduction of lattice
parameters as large as 1.5% when second-row elements
are involved.*?

Binding energies (BE’s) reported in Table II are ob-
tained as the difference between total energies of the bulk
and the isolated atoms calculated with the same basis set.
All calculated values are smaller than the experimental
ones by about 4-13 %. This magnitude is well known al-
ways to be underestimated by the Hartree-Fock method,
a problem that can be partly solved by an a posteriori in-
clusion of correlation contributions using density func-
tionals of the correlation energy.?

Inclusion of polarization functions in the basis set usu-
ally leads to larger binding energies, as can be seen when
comparing results for the two pseudopotential basis sets.
For the all-electron basis sets the opposite trend is found.
In this case the change of the optimized exponent of the
sp orbitals in the valence shell of aluminum atoms
(@, =0.17 for 6-21G, and ay, =0.15 for 6-21G*) has a
larger influence on the calculated binding energy than the
inclusion of polarization functions. The lower exponent
in the 6-21G* basis set results in a stabilization of both
the isolated atom and the solid, although the improve-
ment is much larger for the former, yielding a lower bind-
ing energy.

Band structure and density of states. The calculated
band structure of AIN is presented in Fig. 2. These re-
sults show the existence of a direct band gap of 14.36 eV
at the center of the Brillouin zone (I'). This value is in
strong disagreement with the experimental value of 6.6
eV determined by x-ray spectroscopy,’ reflecting a well-
known failure of the Hartree-Fock method, which overes-
timates this property. Except for the value of the band
gap, our calculated band structure agrees well both in to-
pology and in its main features with those previously pub-
lished.?~2* The calculated width of the valence band
(8.27 eV) agrees well with the estimation of approxi-
mately 9 eV obtained from x-ray spectra.?

Figure 3 shows different projections of the AIN density
of states. The valence band is split into two subbands.
The lowest one is formed by the 2s levels of the nitrogen

atoms. The main contribution to the top of the valence
band comes from the 2p levels of nitrogen, while the bot-
tom of the conduction band arises from the hybridization
of the aluminum s and p orbitals. As can be seen from
the projections, the contribution of the d-type polariza-
tion functions to the valence band is negligible, while
their participation in the conduction band is more impor-
tant, especially for aluminum atoms.

A comparison of calculated DOS and spectroscopic
data is shown in Fig. 4. The UPS (Refs. 15 and 35) and
x-ray emission spectra’ obtained for the valence band of
AIN are in good agreement with the calculated density of
states (DOS). The width of this band is approximately 9
eV (0.33 a.u.) for the calculated DOS, coincident with
that found in both types of spectra. The DOS curve and
the spectra also agree in shape, both showing two main
peaks. The conduction band has been studied by Fomi-
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FIG. 3. Atomic orbital projections of the density of states ob-
tained with the 6-21G* basis set for the wurtzite phase of AIN.
The atomic orbital contributions have been obtained using a
Mulliken partition scheme.
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FIG 4. Comparison of the calculated DOS (a) with experi-
mental x-ray emission spectra (b), and UPS spectra (c). The
solid lines in (b) correspond to the Al spectra, the dashed ones
to the N spectra. The x-ray emission spectra of the conduction
band are shifted relative to those of the valence band in order to
allow a better comparison with the calculated DOS. Intensities
of the spectra are in arbitrary units.

chev? by measuring the spectral dependence of the quan-
tum yield of the external photo effect of x-rays.3¢ In this
case the bandwidth of approximately 12 eV (0.44 a.u.) is
also in good agreement with the calculated DOS. Both
experimental and calculated data show three main peaks
in this region.

Electron-density maps. The electron-density map ob-

TABLE III. Mulliken population data for the optimized
structures with each of the basis sets employed. g(A4) is the
Mulliken net charge of atom 4 (in electrons). Occupations for
all valence orbitals are also listed. Distances and overlap popu-
lations are indicated for the two different bonds of the structure.
d.n refers to the three equivalent Al-N bonds, while dy y is
the distance for the unique bond in the ¢ direction.

621G 6-21G* PS-21G PS-21G*
q (AD +1.934 +1.451 +2.086 +1.353
3s 0.414 0.502 0.369 0.458
3p 0.224 0.307 0.182 0.303
3d 0.029 0.055
q N) —1.934 —1.451 —2.086 —1.353
2s 1.883 1.778 1.910 1.730
2p 1.684 1.557 1.726 1.540
3d 0.001 0.000
dan (A) 1.901 1.981 1.896 1.885
ov. pop. 0.155 0.230 0.140 0.258
dun (A) 1.911 1.909 1.906 1.899
ov. pop. 0.149 0.222 0.134 0.249

tained with the 6-21G* basis set is reported in Fig. 5(a),
whereas Fig. 5(b) shows the difference between the crys-
talline charge density and the superposition of the spheri-
cal atomic densities. Complementary information is sup-
plied in Table III, where Mulliken population data are re-
ported. As noted in earlier work, when dealing with
periodic systems these values should be used in an even
more qualitative way than for molecules.

Figure 5(a) shows a slight departure from spherical

Ly )

FIG. 5. Electron charge-density maps obtained with the 6-
21G* basis set for the wurtzite phase of AIN on a (1120) plane.
(a) Total electron density. (b) Electronic charge difference be-
tween the studied system and the corresponding spherical atom-
ic density superposition arrays. Values corresponding to neigh-
boring isodensity lines differ by 0.01 e/bohr’. The full and bro-
ken curves in (b) indicate density increase and decrease, respec-
tively.
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symmetry for the electronic density around nitrogen
atoms. This distortion, with the electron density buildup
located preferentially in the Al-N bonding regions [see
Fig. 5(b)] arises from covalent contributions to the bonds
in this compound. The electron-density maps are similar
to those obtained for hexagonal wurtzite-type SiC,% al-
though in SiC the greater covalent character results in a
more pronounced departure from sphericity of the atom-
ic electron clouds. The Mulliken population analysis
(Table III) shows that in AIN the aluminum atoms act as
cations, and the nitrogen atoms as anions. As a result, in
the electron-density maps the distortion from spherical
symmetry is almost unnoticeable for aluminum due to the
lower polarizability of the cationic species. A difference
map between the total electron density calculated with
the 6-21G* and the 6-21G basis sets (not shown in the
figure) indicates that the effect of polarization functions is
an accumulation of charge density in the AI-N bonding
regions. Calculated electron-density maps are in good
agreement with the experimentally determined ones.’

Mulliken population values presented in Table III
clearly show that inclusion of polarization functions in
the basis set results in a strong reduction of the ionicity
of the structure, as can be observed in the atomic net
charges and in the increase of the overlap populations for
both types of Al-N bonds. This effect is due not only to
the population of the polarization functions, but also to
significant changes in the occupation of the s and p
valence orbitals of both atom types. From the orbital oc-
cupations one can confirm that inclusion of polarization
functions is more relevant for aluminum than for nitro-
gen.

Structure factors. In order to evaluate the quality of
the electron charge density determined above, the struc-
ture factors associated with the 23 reflections explored by
Sirota, Olekhnovich, and Olekhnovich® were calculated
using the 6-21G * basis set. Our results, which do not in-
clude vibrational effects on the structure factors, agree
well with the values given by these authors at 0 K (Table
Iv).

In the refinement process of the x-ray experimental
data, structure factors are usually determined by a least-
squares procedure involving the ‘“calculated” F’s, ob-
tained from a superposition of atomic charge distribu-
tions. The agreement coefficient defined as

2 l Fiexp_ Ficalcl

1

S Fe
i

is one of the indices used to estimate the quality of the
fitting. Large values for R usually indicate a poor quality
of the experimental data but could also arise from the
inadequacy of the atomic superposition model. Typical
experimental R values are of the order of 0.03. The R
value obtained by comparing the structure factors calcu-
lated from the 6-21G* electron density and the experi-
mental data®® is 0.02, indicating excellent agreement be-
tween the calculated and experimental charge densities.
Optical-phonon frequencies. A factor-group analysis
may be used to predict the number and symmetry of the

7119

TABLE 1V. Static structure factors for AIN. Experimental
values are from Ref. 38. Theoretical structure factors were cal-
culated from the 6-21G* electron density.

hkl chpt Fcalc
010 14.74 14.25
002 21.74 21.48
011 10.92 10.65
012 9.30 9.22
110 21.21 21.14
013 15.74 15.58
020 9.47 9.64
112 15.25 15.35
021 9.46 9.13
004 9.17 9.23
022 7.04 6.97
014 4.31 4.43
023 12.64 12.44
120 7.77 7.77
121 7.75 7.47
114 7.54 7.40
122 5.86 5.94
015 12.07 12.32
024 3.53 3.38
030 13.78 13.93
123 10.60 10.76
032 10.47 10.08
006 8.93 8.10

optical vibrations at the center of the Brillouin zone
(k=0).2% Accordingly, for space group P6;mc, with
two formula units per primitive cell, the irreducible rep-
resentation for the optical phonons may be written as

T,,=A4,+2B,+E,+2E, .

A,, E,, and E, are Raman active. 4, and E, are also
infrared active, and split into their longitudinal and
transverse components (LO and TO). B1 is forbidden
both in Raman and infrared.

In the present work we have used the so-called frozen
phonon method*"*? to evaluate the optical vibration fre-
quencies at the center of the Brillouin zone for AIN.
These frequencies are obtained from the evaluation of the
total energy of the solid as a function of the movement of
the atoms from their equilibrium positions according to
the symmetry of each mode (see Fig. 6). For each optical
mode the energy has been calculated at displacements
from the equilibrium geometry of +0.0125, +0.025, and
+0.050 A. The vibration frequency is then evaluated
from the second derivative of a second-order polynomial
least-squares fit of these data. In our calculations, the
longitudinal vibration frequencies cannot be obtained
since they have contributions of the macroscopic electric
field. Although a supercell method*>*’ has been pro-
posed to overcome this limitation, it is computationally
impractical in this system.

Table V shows the experimental and -calculated
optical-phonon frequencies for AIN. The calculated fre-
quencies are in good agreement with most of the experi-
mental data for the A4, E|, and E, modes. However,
there is clear disagreement with the values reported by
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FIG. 6. Displacement vectors for the six optical phonons of
the wurtzite structure.
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Carlone, Lakin, and Shanks’ for the A, and one of the
E, modes. These authors have established a pattern for
the frequency distribution of the wurtzites, and the E,
modes of AIN seem not to fit well in it (see Fig. 5 in Ref.
9). Considering this regular pattern, in which our calcu-
lated frequency for the higher E, mode would fit perfect-
ly, we are left to the conclusion that there is probably an
ambiguity in the assignment of Carlone, Lakin, and
Shanks.’

Let us finally note that all six optical modes have been
treated as independent oscillators in our calculations.
This approximation is strictly valid only for the 4, and
E, modes. The two modes with E, and those of B, sym-
metry are not independent, and each pair of vibrations
belonging to the same symmetry species should be treated
as coupled oscillators. The approximation of indepen-
dent oscillators is probably reasonable for the £, modes,
for which the mixing should be small due to the large fre-
quency separation. This is not the case for the B; modes,
for which important coupling might be expected. Al-
though it is possible to solve this problem by the pro-
cedure developed by Kunc and Martin,* the lack of ex-
perimental information for comparison with calculated
frequencies makes its application uninteresting.

Elastic properties. For each of the four basis sets, the
total energy of the crystal has been evaluated for nine
different volumes, keeping the c /a ratio fixed at the op-
timum value found for each case. From a third-order
least-squares polynomial fit of these data, one can derive
the equilibrium volume, the bulk modulus, and its pres-
sure derivative (Table VI). As will be seen below, the
bulk modulus also can be obtained from the calculated
elastic constants. Comparison of the calculated values
for the bulk modulus with those determined experimen-
tally is not straightforward because of the high dispersion

TABLE V. Experimental and calculated AIN optical-phonon frequencies (in cm ') calculated with
the 6-21G* basis set at the center of the Brillouin zone.

Mode Carlone®*  Sanjurjo® Collins® Brafman® Hayashi® Perlin® McNeil® Calc.
A, (LO) 663 838 916 910 893 899"
A, (TO) 659 668 667 660 607 614 668
E, (LO) 821 895 910 910 924 916 989"
E, (TO) 614 671 667 672 673 734
EM 303 241 252 301
EY® 426 665 660 660 704
BV 723
BY 172

*Reference 9.

YReference 10.
‘Reference 14.
dReference 8.

‘Reference 12.
fReference 13.
8Reference 11.

"Estimated using the Lyddane-Sachs-Teller relation with £,=8.50 and €, =4. 68 from Ref. 54.
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TABLE VI. Volume (¥), bulk modulus (B), and its pressure
derivative (B’) calculated for AIN with different basis sets.

621G 6-21G* PS-21G PS-21G* Expt.

v (A% 42444 41919 42.131 41431 41.714°
B (GPa) 243 239 237 239 202%, 208°
2374, 160°
B’ 4.45 3.77 4.30 4.19 6.3, 5.2°

2Reference 1.

YReference 17.
°Reference 44.
dReference 11.
“Reference 50.

in the measured results. Our calculated value is in good
agreement with the higher experimental data. The calcu-
lated pressure derivative of the bulk modulus is underes-
timated with all four basis sets. A similar result is found
when comparing the experimental values with other cal-
culations based on the local-density approximation.*

Recent papers have described a straightforward
method for the evaluation of the elastic constants of ionic
crystals from Hartree-Fock calculations.**~#" The total
electron energy is evaluated point by point for several
suitable unit-cell geometries (lattice strain) and different
atomic fractional coordinates (inner strain). The elastic
constants are then computed as second derivatives of the
energy with respect to the different strain components.
Data calculated by the present approach ignore all vibra-
tional contributions to the energy, and thus should be
compared to experimental values at O K corrected for the
effect of zero-point vibrations.***®4° When plotting mea-
sured elastic constants against temperature a slight linear
increase is generally observed as T decreases. Calculated
elastic constants are thus expected to be somewhat larger
than experimental ones.

In the present work we have employed this approach
for the evaluation of the five independent components of
the elasticity tensor of the wurtzite phase of AIN. Elastic
constants have been calculated numerically as second
derivatives of the total crystal energy with respect to
strain components €;, according to a second-order expan-
sion of the elastic energy of the type

6
E=3 3 Cyeej,
ij=1

where the Voigt contraction of subscripts for tensorial
components is used.’! Suitable lattice deformations
D =[g e,6;648585] with all nonzero components equal
were considered in order to express the energy E as a par-
abolic function of a single strain parameter (7). The
coefficient in this function represents a linear combina-
tion of elastic constants C;;. The five deformations em-
ployed are D,=[n00000], D,=[n7n0000],
D;=[n07%000], D,=[007000], and D
=[000700]. Application of these deformations to the
crystal structure of AIN gives five sets of energy data as a
function of the strain parameter from which C,,,
Ci1+Cyy, €y +C33+2C 5, Cy;, and Cyy, respectively,
can be obtained. For each of the deformations, six
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different values for the strain parameter in the range
—0.02 <7 <0.02 have been considered. When applying
the D, and D, deformations to the solid, the unit cell
remains hexagonal with the 12 original symmetry opera-
tors preserved. All other three deformations lower the
symmetry: for D, and D, the system becomes monoclin-
ic with only four operators, while in the D deformation
the symmetry is further reduced to triclinic with only two
operators left.

An important point to consider is the positional relaxa-
tion of the atoms in the unit cell (inner contribution)
caused by lattice strain. If that effect is neglected and the
atomic fractional coordinates kept constant, then an
upper limit (external contribution) is obtained for the
value of each elastic constant. The results of this calcula-
tion are reported in the first column of Table VII. For
each elastic constant, reoptimization of the inner posi-
tions (maintaining the appropriate symmetry constraints)
has been performed only for the two end values of the i
range (—0.02 <7 <0.02), where it is supposed to be most
important. In the second and third columns of Table VII
we report the inner contributions to elastic constants and
the total calculated values. In the case of Cy4,, the total
loss of symmetry results in the need for reoptimization of
the position of all four unit-cell atoms. Taking into ac-
count the large computational effort needed to perform
this task, only the external contribution has been evalu-
ated for this constant.

To date, two full sets of measured elastic constants
have been published for AIN.'"!" In Tsubouchi’s!” work,
elastic constants of AIN were evaluated from surface-
acoustic-wave phase velocities on AIN single-crystal films
grown on the basal plane of Al,0;. Recently, McNeil,
Grimsditch, and French!! have reported a measurement
of all five elastic constants from Brillouin-scattering ex-
periments on single crystals. Since experimental work

TABLE VII. Calculated (6-21G* basis set) and experimental
elastic constants (GPa) of AIN. Values in the three first
columns (W calc.) refer to elastic constants calculated for the
wurtzite structure. The external contribution to the elastic con-
stants does not include the positional relaxation of the atoms
caused by lattice strain, and the inner contribution is the correc-
tion for atomic relaxation. Values in the fourth (ZB) and fifth
(W from ZB) columns are for the equivalent zinc-blende struc-
ture and those calculated for the wurtzite structure by using
Martin’s relations (Ref. 52), respectively.

W calc. ZB W from ZB Expt.
external inner total
C, 537 —73 464 348 389 3452 4114
Cp 120 29 149 168 158 1252 149¢
Cis 160 —44 116 138 120* 994
Ci; 512 —103 409 408 3952, 394° 389¢
Cys 128 128 135 101 118° 125¢
B 231 228 228 2022, 208° 237¢

#Reference 17.
YReference 53.
°Reference 44.
9Reference 11.
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has only been performed at room temperature, no extra-
polation to 0 K could be done, and comparison of these
measured values with our calculated results is not
straightforward.

The calculated values are somewhat larger than the ex-
perimental ones, which is the expected trend, since the
temperature factor is not included in our calculations.
As stated above, calculated elastic constants correspond
to values extrapolated at 0 K and should be larger than
the results from measurements at room temperature. C,,
and C; are affected by a larger numerical error because
they are derived indirectly from linear combinations.
This leads to a seemingly paradoxical result: the inner
correction for the C|, constant is positive, while we ex-
pect negative values in all cases for this magnitude. Be-
cause the inner correction for C,; is more negative than
that calculated for the linear combination C,; +C,, used
to obtain C,,, the total result gives a positive value.

Keeping in mind the discrepancy due to temperature
factors, all calculated values are in good agreement with
experimental results. Surprisingly the experimental value
for C,, given by Tsubouchi!’ is lower than Cj;, while in
our calculations, in McNeil’s!! measurements, and in ex-
perimental values for related compounds with wurtzite
structure [GaN and InN (Ref. 54)] the opposite trend is
found.

The bulk modulus B for an hexagonal crystal can be
evaluated from its elastic constants using the following
expression:

_ Cx(Cyy +C12)—2C%3
Cll +C12 +2C33 _4C13 )

The value obtained for the bulk modulus introducing
the calculated elastic constants in this equation (see Table
VII) is in good agreement with the value calculated with
the method described above, and with the experimental
value obtained from the elastic constants given by
McNeil, Grimsditch, and French.!!

An alternative way to obtain the elastic constants for a
crystal with wurtzite structure consists in calculating
these for the equivalent zinc-blende crystal and correlat-
ing its three elastic constants (C{,, C§,, and C},) with the
set of five elastic constants of the hexagonal phase (C#,,
ch,, C%, C%, and C%,) using the symmetry descent pro-
cedure developed by Martin.> The advantage of this
method is that it only requires the evaluation of three
constants for the simpler cubic crystal, greatly reducing
the computational effort.

The results obtained using this alternative method are
summarized in Table VII. This procedure gives values
which, although less accurate, agree reasonably well with
the ones calculated explicitly for the wurtzite structure.
At odds with the results of the direct method, the in-
direct evaluation of elastic constants gives C% <C%,
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leaving this ambiguity unsolved. These results indicate
that the elastic constants of a compound with a wurtzite-
type structure can be evaluated to a good approximation
from the computationally less demanding calculation of
the elastic constants for the equivalent cubic zinc-blende
structure.

The elastic constants calculated for the zinc-blende
structure of AIN agree well with the values C,; =328
GPa, C},=139 GPa, and C,, =133 GPa calculated by
Sherwin and Drummond®® by applying the reverse of
Martin’s procedure to the experimental elastic constants
of hexagonal AIN. From the calculated elastic constants
for the cubic zinc-blende structure, a bulk modulus for
the cubic phase of 228 GPa can be obtained from the re-
lation B=(C,; +2C,)/3 that is valid for cubic crystals.

CONCLUDING REMARKS

We have evaluated several structural and physical
properties for the hexagonal wurtzite-type phase of AIN
using the periodic Hartree-Fock approach with both all-
electron and pseudopotential basis sets. The calculated
structural parameters are well reproduced with all four
basis sets considered in this work. Inclusion of polariza-
tion functions in the basis set appreciably improves the
calculated values of physical properties such as phonon
vibration frequencies or elastic constants because it al-
lows for a better description of electron relaxation
throughout the unit cell. Since the bottleneck of
Hartree-Fock calculations is the large number of bielec-
tronic integrals to be computed, which is dictated mainly
by the more diffuse basis functions, all-electron calcula-
tions can become paradoxically faster than pseudopoten-
tial ones, depending on the exponents of the basis func-
tions employed for the description of the valence elec-
trons.

The evaluation of physical properties such as elastic
constants and phonon vibration frequencies for solids us-
ing the ab initio Hartree-Fock method yields results
which are in fair agreement with measured values. This
theoretical approach is thus expected to provide in the
near future a powerful complement to experimental stud-
ies for the full characterization of technologically in-
teresting materials with complex structures.
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