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The two-dimensional zero-temperature Random Field Ising Model with local adiabatic relaxation
dynamics is studied. When externally driven, this model allows to analyse the properties of an
advancing front for different amounts of disorder. By imposing special forced boundary conditions
and allowing for systems with rectangular geometry, we favour the existence of a unique interface
which is the boundary of a 1d spanning avalanche. We show that the description of an advancing
front in terms of a univalued function x(y) lacks of a relevant contribution in the thermodynamic
limit: the existence of overhangs and islands which are characteristic of the nucleation and growth
dynamics.

I. INTRODUCTION

The athermal (T=0) Random Field Ising Model
(RFIM) has been commonly used to explain the
Barkhausen noise in ferromagnetic materials [1][2]. In
many cases, ferromagnetic coupling is so strong that it is
not necessary to consider temperature as a relevant pa-
rameter in the model. Energy barriers are large enough
that thermally activated processes are negligible. By con-
sidering interaction between spins, quenched disorder in
the sample and external magnetic field, this model of-
fers a good explanation of hysteresis and crackling noise
(avalanche dynamics).
This model is applicable to other physical systems such as
structural transitions, superconductivity, capillary con-
densation of gases in porous solids, etc. [2][3]. In all these
experiments there is a first order phase transition and
hysteresis process occurs. Metastable states separated by
high energy barriers appear in the free energy landscape.
The effect of quenched disorder determines which sites of
the system are more favourable to nucleate or not under
the presence of a perturbation. When an external force
is applied, for example a magnetic field, a discontinuity
in the conjugated variable, for example magnetization,
appears as a system response. This non-equilibrium col-
lective event, known as an ’avalanche’, is essentially due
to the fact that the system jumps from one metastable
state to another. The properties of these avalanches de-
pend strongly on the quenched disorder present in the
system.
The RFIM with Periodic Boundary Conditions (PBC)
describes a first order phase transition dynamics through
a pure nucleation process. The lower critical dimension
of the RFIM is known to be dc = 2 in the equilibrium
case [4]. This implies that ferromagnetic order will not
be present for d ≤ 2 in this model. What is not to-
tally clear is if the lower critical dimension is still dc = 2
for the RFIM with local metastable dynamics at T=0.
Sethna opened the door to a possible existence of long
range order in this model [5]. Nevertheless, it was neces-
sary to examine larger system sizes in order to determine

whether the critical value associated to the quenched dis-
order σc in the thermodynamic limit was finite or not.
Recently, Spasojević et al. found numerical evidence of
a critical point below which the system orders ferromag-
netically. These evidences were based on the finite size
scaling collapse of the curves corresponding to magneti-
zation [6], distribution of avalanche sizes [7] and number
of spanning avalanches [8].
On the other hand, Seppälä et al. [9] found evidence of
roughening effects in the equilibrium RFIM at T = 0
with Forced Boundary Conditions (FBC) without exter-
nal field. The model with metastable dynamics but re-
stricted to nucleation close to the interface, was studied
in the context of depinning transition [10], and for the
study of morphological changes in the invading front [11].
In this work, we present a different point of view to
deepen the understanding of these phenomena. By ap-
plying FBC to the athermal RFIM with metastable dy-
namics and changing the geometry of the system from
square to rectangular, the presence of the critical tran-
sition (order-disorder) and the roughening transition are
studied. The model with FBC is intermediate between a
pure nucleation process and a single interface dynamics.
Nucleation of domains away from the propagating front is
allowed as well as the presence of overhangs. As it will be
shown, the use of rectangular systems allows to separate
roughening and order-disorder transitions and combined
finite size scaling hypothesis will be contrasted.
This manuscript is structured as follows: Section II
presents the model and simulation details. Results with
partial curve collapse are presented in Section III. Con-
clusions and a brief summary of the results are exposed
in Section IV.

II. MODEL

From a general point of view, Ising models consist in an
ensemble of N interactive spins situated at the nodes of
a d-dimensional lattice. The RFIM is a variant of these
kind of models which includes quenched disorder that
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distorts the free energy landscape. For this purpose, one
considers a random field hi associated to each node of the
lattice which represents a defect: impurities, dislocations,
frustration, vacancies, etc. Spins can take the values si =
±1. The Hamiltonian describing this model is:

H = −
∑
〈ij〉

Jsisj −
∑
i

(H + hi)si. (1)

The first term accounts for ferromagnetic interaction
with nearest neighbours. For simplicity, we consider
J = 1. H is the external field and {hi} are local quenched
random fields, Gaussian distributed according to:

ρ(h) =
1√

2πσ2
exp

(
− h2

2σ2

)
, (2)

where σ characterizes the amount of disorder present in
the system. In this work a 2d square lattice with rectan-
gular shape (N = Lx × Ly) is studied. The aspect ratio

a is defined as a =
Ly
Lx

. In order to generate a metastable
dynamics, it is necessary to stablish a criterion to de-
termine under which conditions the system remains in a
local minimum of the free energy landscape. A spin is
stable when it is aligned with its effective field:

heffi =

z∑
k

sk +H + hi, (3)

where z is the coordination number, which in the case of
a 2-d square lattice is z = 4. Following this determin-
istic rule, a spin flips when its local field changes sign.
A flipping event changes the effective field of the near-
est neighbours and any of these could become unstable.
The process continues in the same way originating an
avalanche of flipping spins. The number of spins that
have changed their state in the same avalanche defines
the size of the avalanche. Simulations start with all the
spins pointing down ({si} = −1) and H = −∞. The ex-
ternal field is increased until a spin triggers an avalanche.
Then the external field is kept constant until there are no
more unstable spins and the system reaches a metastable
state again. The dynamical process finishes when all
the spins are pointing up ({si} = +1) and H = +∞.
For numerical simulations, the Sorted list algorithm has
been used [12]. Instead of simulating extremely large sys-
tems, it has been preferable to study characteristic sizes
of Lx, Ly ≤ 1024 and perform a large number of averages
over randomness realizations.
For the study of avalanches it is important to distinguish
those which span the system in one or two spatial di-
mensions from the non-percolating ones. In the ther-
modynamic limit, spanning avalanches are candidates to
represent critical effects or discontinuities in the mag-
netization. A 1d spanning avalanche is defined as that
event which follows a connecting-path between opposite
sides of the system. Since the lattice has rectangular
shape, 1d spanning avalanches in the x̂ direction (Nx

1 )
and 1d spanning avalanches in the ŷ direction (Ny

1 ) must

be distinguished. If the event connects all four sides then
it is considered as a 2d spanning avalanche. With the
standard PBC and Lx = Ly ≡ L, this model has been
broadly studied [5]-[8]. Recent numerical results indi-
cate that there exists a continuous transition for a finite
value of disorder σc = 0.54 which separates two different
regimes [5][6]. For σ < σc, there is an infinite avalanche,
which is usually 2-d spanning (See Fig. 1 (a)). When dis-
order reaches its critical value σc, there is a peak in the
average number of 1d spanning avalanches [8]. Power-
law distributions are found in some magnitudes related
to avalanches in this situation (size and duration). For
the regime σ > σc, the magnetization process takes place
by nucleation of small domains and there is no presence
of spanning avalanches (See Fig. 1 (b)).
The idea of imposing non-standard FBC is to force sim-
ulations to exhibit a domain wall which can be identified
as an advancing front (See Fig. 1 (c) and (d)). From a
physical point of view, FBC would represent a situation
in which the system under study is a subset of a bigger
one with an already formed interface. FBC consists in
keeping PBC in the vertical ŷ direction whereas the hori-
zontal x̂ direction is subjected to fixed boundaries: at the
extreme x = Lx + 1, there is a row of up spins whereas
at x = 0 one assumes that there is a row of down spins.
Under these specific conditions, 1d spanning avalanches
in the ŷ direction are more common in a regime of low
disorder. Below a certain value of the quenched disorder,
σr, a sequence of flat 1d massive spanning avalanches
appears magnetizing the system (See Fig. 1 (c)). As dis-
order increases, non-spanning avalanches also take place
and 1d spanning avalanches become progressively not as
massive and less common. In this second regime, a rough
interface can still be identified (See Fig. 1 (d)). As disor-
der is close to σc, critical 1d spanning avalanches appear
as a reminiscence of the model with PBC. In a high dis-
order regime, the presence of 1d spanning avalanches has
practically no statistical weight and it is not possible to
identify a propagating front any more. In this last regime,
nucleation and growth dynamics is recovered, as in the
case with PBC (See Fig. 1 (e)).
Interface properties can be studied when 1d spanning
avalanches in the ŷ direction occur. In such situation,
two front lines can be defined by a single-valued function
x(y). The right (IR) and left (IL) interfaces are defined
as follows:

• IR : Right interface of the 1d spanning avalanche.
For every value of y the position of the front is set
at the most right spin of the spanning avalanche.

• IL : Left interface of the 1d spanning avalanche.
For every value of y the front is located at the most
left position of the spanning avalanche.

See the example in Fig. 2 where the spanning avalanche
(green coloured) and the fronts IL and IR are plotted.
Roughness of IL and IR are independently measured by
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PBC σ < σc (a)

PBC σ > σc (b)

FBC σ < σr (c)

FBC σr < σ < σc (d)

FBC σ > σc (e)

FIG. 1. Sequence of configurations during the magnetization
process for PBC (pure nucleation) and FBC (front propaga-
tion). External field H is increased from left to right bring-
ing the system from negative magnetization (white regions)
to positive magnetization (coloured regions). Black coloured
spins correspond to non spanning avalanches. Green regions
are spanning avalanches. In (c) and (d) the interface advances
from right to left. Different tones of green represent different
1d spanning avalanches.

using the following relation:

ω =

√√√√√ 1

Ly

Ly∑
j=1

x2(j)−

 1

Ly

Ly∑
j=1

x(j)

2

, (4)

where x(j) represents the x coordinate corresponding to
the position of the interface at a fixed height y = j.
The description of the interface in terms of two uni-
valued lines x(y) does not account for the existence of

overhangs, unflipped regions, and flipped regions that
were present prior to the avalanche. For each span-
ning avalanche, one can measure the number of spins
which have flipped n ↑, the area A enclosed between
IR and IL and the magnetization inside this area MA.
The connected topology of 1d spanning avalanches can
leave unflipped regions (U) behind the final interface
IL (white islands in Fig. 2) and it can enclose islands
that were already flipped (F ) before the avalanche event
(darker regions in Fig. 2). The present study allows
to compute these defects. Taking into account that
MA = n ↑ +F − U , the quantities ∆, U and F can
be evaluated by using the following relations:

∆ =A− n ↑= U + F, (5)

U =
1

2
(∆ + n ↑ −MA) , (6)

F =
1

2
(∆− n ↑ +MA) . (7)
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FIG. 2. Configuration of a system (L=128,σ = 0.85) in which
a 1d spanning avalanche advancing from right to left has oc-
curred. Same color code as in Fig. 1. Interfaces are high-
lighted with red lines.

In the following sections, in order to obtain reliable statis-
tics, averages are taken over a number of randomness
realizations which is of the order of 105.

III. RESULTS

A. 1d Spanning avalanches

The average number of 1d spanning avalanches as a
function of the disorder σ is presented in Fig. 3 (a) for
PBC in square systems (Lx = Ly; a = 1).
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FIG. 3. Average number of 1d spanning avalanches per run
against the disorder σ for different system sizes in a square
system a = 1 for PBC (a) and for FBC (b). Lines are guides
to the eye.

The number of 1d spanning avalanches exhibits a peak at
the value of disorder σc(L) as it was found by Spasojević
et al. in Ref. [8]. These peaks present the following
scaling behaviour:

NPBC
1 (σ, L) = LθcGPBC

(
L1/νc

σ − σc
σ

)
, (8)

where σc = 0.54±0.03, 1
νc

= 0.19±0.02, θc = −0.10±0.03

and GPBC(z) is a scaling function related to the num-
ber of 1d spanning avalanches for PBC (See Fig. 5 (b)).
Note that the negative value of θc means tat 1d spanning
avalanches are negligible in the thermodynamic limit.
The number of 1d spanning avalanches in the ŷ direction
is shown in Fig. 3 (b). A minuscule fraction of 1d span-
ning avalanches in the x̂ direction as well as 2d spanning
avalanches are also found but with no relevant statistical

weight. A handwaving argument to explain why there
are more 1d spanning avalanches in the model with FBC
than with PBC is given as follows: in the low disorder
regime, local fields take values around zero. As spins near
the boundary x = Lx have a neighbour which is pointing
up the external field needs to be around H = 2 in order
to flip it and create a nucleation site for a 1d spanning
avalanche to propagate from y = 0 to y = Ly. Con-
trarily, in the model with PBC, the external field needs
to be around H = 4 in order to flip a spin generating
the same spanning avalanche. As it can be appreciated
in Fig. 3 (b), two steps are present in the number of 1d
spanning avalanches with FBC. The higher (left) step is
related to a morphological transition of the propagating
front. This transition separates the regimes where there
is a sequence of 1d spanning avalanches with a flat pro-
file (faceted growth) and the regime where 1d spanning
avalanches exhibit a certain rough profile. The second
step occurs in the same region where data for PBC shows
a peak (Fig. 3 (a)) and it can be understood as a signa-
ture of the bulk critical transition. In order to elucidate
how the height of the step related to roughening effects
depends on the system size and shape, simulations at dif-
ferent Lx and Ly have been performed. In Fig. 4, one can
appreciate that Lx controls the height of this step. By
changing the aspect ratio, the morphology of the curves is
varied. When a is lower than unity, which means that the
surface is dominated by periodic boundaries, critical ef-
fects are strengthened. As the aspect ratio increases, the
sides of the system which are subjected to forced bound-
ary conditions take over and critical effects are gradually
hindered.
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FIG. 4. Average number of 1d spanning avalanches per run
in a system with a fixed Lx = 512 and different aspect ratio
a = Ly/Lx. Lines are guides to the eye.

The presence of these transitions suggests proposing com-
bined finite size scaling relations with parameters re-
lated to both transitions in order to achieve partial
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curve collapse. For a fixed geometry of the system, i.e.
same aspect ratio, the scaling relation for 1d spanning
avalanches with FBC through which partial curve col-
lapse is achieved reads:

NY
1 (σ, Lx, Ly) = Lθrx G̃

(
L1/νr
x

σ − σr
σr

; a

)
+

(LxLy)
θc/2 ˜̃G

(
(LxLy)

1/2νc σ − σc
σ

; a

)
.

(9)
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FIG. 5. Partial curve collapse of the average number of 1d
spanning avalanches per run for different system sizes in a
square lattice Lx = Ly ≡ L. Partial curve collapse in the
regime dominated by roughening effects is presented in (a).
Partial curve collapse for the regime dominated by the bulk
critical transition is shown in (b). Scaled PBC peaks are
presented reduced by a factor 1/2, as Eq. (10) indicates (Note

that GPBC(z; 1) = 2 ˜̃GFBC(z; 1) for a = 1).

Partial curve collapse is achieved in the roughening
regime under the set of parameters σr = 0.25 ± 0.02,
1
νr

= 0.37 ± 0.02 and θr = 0.16 ± 0.01 (See Fig. 5 (a)).

The scaling function in this regime, G̃ (z; a) depends on

the aspect ratio and the scaling variable z = L
1/νr
x

σ−σr
σr

which depends on the length Lx. All errors associated to
the set of scaling parameters represent the approximate
range for which collapses are still satisfactory (This defi-
nition is valid for the following scaling collapses presented
in this work). In the thermodynamic limit, the number
of flat spanning avalanches diverges near σr. This di-
vergence is not surprising since, as Lx becomes larger,
the number of 1d spanning avalanches in the ŷ direction
that can fit in the system increases. Partial curve col-
lapse is achieved in the bulk critical regime under the set
of parameters from Eq. (8). (See Fig. 5 (b)). The scal-

ing function in this regime, ˜̃G (z; a) is strongly-dependent
on the aspect ratio a. The scaling variable in this case,

z = (LxLy)
1/2νc σ−σc

σ , has been defined from the geomet-

rical average length
√
LxLy, so as to evidence the spatial

isotropy related to this critical transition. The hypoth-
esis of combined finite size scaling remains still valid for
different aspect ratios where the critical effects have more
presence (Fig. 6) or have practically disappeared (Fig. 7).
The connection between 1d critical spanning avalanches
in the model with FBC with those in the model with
PBC, is justified by a numerical evidence: the right tail
of the peak found with PBC is related with that one
found with FBC by the following equation:

GPBC (z; a) = ˜̃GFBC (z; a) + ˜̃GFBC
(
z;

1

a

)
, (10)

where z, is the scaling variable in the critical regime

and GPBC(z, a) and ˜̃GFBC(z; a) are scaling functions in
the critical regime for PBC and FBC (See Fig. 5 (b)
and Fig. 6 (b)). This relation is justified by the geo-
metrical independence of the bulk critical transition in

PBC, ˜̃GPBC (z; a) = ˜̃GPBC
(
z; 1

a

)
, and by the symmetry

breaking due to the presence of FBC, ˜̃G
FBC(X;Y )
Y ;X (z; a) =

˜̃G
FBC(Y ;X)
X;Y

(
z; 1

a

)
, where the superscripts FBC(X,Y )

represent a system with fixed boundaries in the x̂ or ŷ
directions and the subscripts X and Y correspond to the
scaling functions related to 1d spanning avalanches in
those directions.
From the behaviour for 1d spanning avalanches in sys-
tems with stripe geometry (a < 1), four different regimes
can be distinguished as a function of the disorder σ.
First, there is the faceted growth regime at σ < σr (Fig. 8
(a)). A second regime at σr < σ < σc where the advanc-
ing front presents a rough profile and there is a mean-
ingless presence of nucleated domains in front of the ad-
vancing interface (Fig. 8 (b)). A third regime at σ ∼ σc
where the critical interface advances under the existence
of nucleated domains (Fig. 8 (c)). Above σc, it is un-
likely to find a 1d spanning avalanche in order to define
a front and thus, the front will be ill-defined (Fig. 8 (d)).
For higher disorders, nucleation and growth dynamics is
recovered.
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FIG. 6. Partial curve collapse of the average number of 1d
spanning avalanches per run for different system sizes with
a = 1/4. Partial curve collapse in the regime dominated by
roughening is presented in (a). Partial curve collapse for the
regime dominated by the bulk critical transition is shown in
(b). Peaks of PBC are superposed in the critical regime fol-

lowing Eq. (10) for a = 1/4. Note that ˜̃GFBC(z, 1
a

= 4)→ 0.

B. Interface analysis

1. Roughness curves

Results of the roughness curves for square systems
a = 1 (Lx = Ly ≡ L) are presented in this subsection. In
Fig. 9, one can appreciate the roughness curves for a sys-
tem of size L = 512. This quantity can be understood as
an order parameter which describes the transition from
faceted growth to rough interface. Below σr, ω is null
and a faceted growth is identified whereas a rough inter-
face appears above σr. In the region dominated by bulk
critical effects (right hand side of Fig. 9), these roughness
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FIG. 7. Curve collapse for average number of 1d spanning
avalanches per run for different system sizes in a system with
a = 2. In this case, critical effects have been hindered and
the contribution of spanning avalanches in the critical region
is meaningless.

σ < σr Faceted Growth (a)

σr < σ < σc Rough Interface (b)

σ ∼ σc Critical Interface (c)

σ > σc Ill-defined interface (d)

FIG. 8. Sequence of configurations during the magnetization
process for FBC model with aspect ratio a = 1/8. External
field H is increased from left to right. Black coloured regions
correspond to non-spanning avalanches whereas 1-d spanning
avalanches are represented by different tones of green.

curves exhibit a peak.
At a given disorder σ, the average value of the effective
width of the interface IR is higher than IL, ωR > ωL.
This fact can be explained by understanding how fronts
have been pinned. The interface IL is essentially pinned
by very negative random fields and small nucleated do-
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mains whereas IR is stopped by large regions that were
already flipped in small independent avalanches. Such a
random spatial boundary confers a higher effective width
to this front line.
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FIG. 9. Average roughness of both interfaces as a function of
the disorder σ for a square system of L=512. Lines are guides
to the eye.

The identification of features related to both transitions
in these curves suggests again using partial curve collapse
by proposing the following combined scaling relations.

ωR(σ, L) = Lζ
R
r W̃R

r

(
L1/νr

σ − σr
σr

)
+

Lζ
R
c W̃R

c

(
L1/νc

σ − σc
σ

)
,

(11)

ωL(σ, L) = Lζ
L
r W̃L

r

(
L1/νr

σ − σr
σr

)
+

Lζ
L
c W̃L

c

(
L1/νc

σ − σc
σ

)
,

(12)

where WR
r ,WL

r , WR
c and WL

c are the scaling functions for
both interfaces IR and IL in the roughening (r) and bulk
critical regime (c). Partial curve collapses are presented
in Fig. 10 and Fig. 11 and the fitted roughness exponents
are presented in Tab. I. In the faceted growth regime,
1d critical spanning avalanches present a null roughness
exponent (ζR = 0, ζL = 0). Due to finite size effects,
null values of the effective width are found. As exposed
by Ji and Robbins in Ref. [11], the propagating front ex-
hibits a non-null value of roughness at sufficiently large
length scales for Gaussian quenched disorder although
our system sizes do not allow to observe it. Rough-
ness exponents in the regime where the rough interface
advances under the presence of few nucleated domains
(σr < σ < σc), ζ

R
r = 1.00 ± 0.02 and ζLr = 1.00 ± 0.01,
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FIG. 10. Partial curve collapse of average roughness of the
interface IR in the regime dominated by roughening effects in
(a) and at the region of disorder dominated by critical effects
in (b).

match with the exact result predicted by renormalization
group theories ζ = (5− d) /3 (= 1) [13]. For σ ∼ σc, as it
was found in the equilibrium case [9], there are deviations
from ζ = 1. In this critical regime, the fitted roughness
exponents are ζRc = 1.02 ± 0.01 and ζLc = 0.95 ± 0.01.
Thus, changes in the morphological properties of critical
interfaces are expected.

2. Overhangs and Islands

Standard studies of driven interfaces in disordered me-
dia using a continuous description x(y) of the interface
do not allow for the existence of overhangs [14] nor nu-
cleation away from the front when it is energetically
favourable. In some cases, overhangs are permitted but
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σ < σr (Faceted Growth) σr < σ < σc (Rough interface) σ ∼ σc (Critical Interface) σ > σc (Ill-defined Interface)

ζR 0 1.00± 0.02 1.02± 0.01 -

ζL 0 1.00± 0.01 0.95± 0.01 -

TABLE I. Roughness exponents related to interfaces IR and IL for all different types of growth.
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FIG. 11. Partial curve collapse of average roughness of the
interface IL in the regime dominated by roughening effects in
(a) and in the region of disorder dominated by critical effects
in (b).

not nucleation disconnected from the propagating inter-
face [10][11][15]. Therefore, it is interesting to evaluate
the importance of these contributions.
The analysis of unflipped regions left behind (U) the in-
terface comprehends overhangs of the front IL and un-
flipped islands with very negative local fields. In Fig. 12
(a), a single peak which grows and shifts to lower values
of σ as the system size L is increased can be observed.
Despite the fact that one observes a single peak, the fi-

nite size scaling collapse is not possible by assuming a
unique contribution. Thus, as it has been done in the
preceding sections, a combined finite size scaling relation
is proposed in order to test partial curve collapse. This
scaling relation reads:

U(σ, L)

L2
= Lθ

r
U Ũr

(
L1/νr

σ − σr
σr

)
+Lθ

c
U Ũc

(
L1/νc

σ − σc
σ

)
,

(13)

where θrU = −0.2 ± 0.1, θcU = 0.43 ± 0.02 and Ũr,Ũc
are scaling functions in the roughening and bulk critical
regime. First term in Eq. (13) exhibits good collapse for
the left tail of the peak (not shown) whereas the sec-
ond term shows good collapse in the critical region (See
Fig. 12 (b)). Since in this combined finite size scaling
relation there is a negative exponent θrU , one concludes
that the contribution of U in the roughening regime does
not play a significant role in the thermodynamic limit.
On the other hand, due to the positive value of the expo-
nent θcU , the fraction of area occupied by overhangs and
islands diverges near the critical point.
The analysis of flipped regions in front (F ) of the inter-
face includes the contribution of overhangs of the front
IR and isolated flipped islands which had already trans-
formed prior to the spanning avalanche and have been
absorbed afterwards. In Fig. 13 (a), two peaks are grad-
ually discriminated as the system size is increased. In the
regime σ < σr, there are no nucleated islands in front of
the interface and no overhangs, which agrees with the
existence of the faceted growth regime. In the absence
of isolated nucleated domains, the peak situated in the
roughening regime corresponds solely to overhangs of the
interface IR. As disorder is approached to σc there is a
strong presence of nucleated islands in front of the inter-
face. This contribution is manifested in a second peak
in this regime of disorder. The existence of two contri-
butions clearly suggests proposing a combined finite size
scaling so as to obtain partial curve collapse. The scaling
relation reads:

F (σ, L)

L2
= Lθ

r
F F̃r

(
L1/νru

σ − σr
σr

)
+Lθ

c
F F̃c

(
L1/νcu

σ − σc
σ

)
,

(14)

where θrF = 0.05 ± 0.01, θcF = −0.3 ± 0.2 and F̃r, F̃c
are scaling functions in the roughening and bulk criti-
cal regime. The fraction of area occupied by overhangs
and islands diverges in the thermodynamic limit in the
vicinity of σr (See Fig. 13 (b)) whereas the fraction of
area occupied by isolated nuclei near σc is an irrelevant
surface effect.
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FIG. 12. Average area U of unflipped regions left behind
the interface over the total surface of the system against the
disorder σ in (a) and partial curve collapse in the region of
disorder dominated by critical effects in (b). Lines are guides
to the eye.

IV. CONCLUSIONS

In this work we have presented results corresponding
to the athermal RFIM with local adiabatic relaxation
dynamics with FBC and rectangular geometries with dif-
ferent aspect ratios. A transition from faceted growth to
rough growth is found at σr ∼= 0.25 as well as the order-
disorder transition at σc ∼= 0.54. The critical effects at
σc are more important as the aspect ratio Ly/Lx be-
comes smaller (stripe geometries). Due to the existence
of these transitions, combined scaling relations have been
proposed and partial curve collapse has been achieved.
In summary, four different propagating front regimes can
be observed as a function of increasing disorder. i) The
faceted growth regime (σ < σr), which presents a null
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FIG. 13. Average area F of flipped regions left behind the
interface over the total surface of the system against the dis-
order σ in (a) and partial curve collapse in the region of dis-
order dominated by critical effects in (b). Lines are guides to
the eye.

roughness exponent; ii) A rough advancing interface at
σr < σ < σc which presents ωL, ωR ∼ L; iii) A critical
advancing interface in the bulk critical regime (σ ∼ σc)
which exhibits deviations in the roughness exponents
(ωR ∼ L1.02 and ωL ∼ L0.95) and finally iv) a ill-defined
interface for higher values of the disorder σ.
Contribution of overhangs and islands has been com-
puted in square systems (a = 1). It has been shown that,
in the thermodynamic limit, the area occupied by over-
hangs of the interfaces IR and flipped islands diverges as
F ∼ L2.05 in the roughening regime (σr < σ < σc). Near
σc, the area occupied by overhangs of IL and unflipped
islands diverges as U ∼ L2.43. These divergences suggest
that, in order to study critical phenomena in invading
front problems using the athermal RFIM with metastable
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dynamics, overhangs and islands must be considered.
Further research based on roughness curves and contri-
bution of overhangs and islands for non-squared systems
(a 6= 1) will give us a better understanding of the com-
petition between front propagation and pure nucleation
processes.
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