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An optimized self-consistent method for determination of the quantal electron density is presented.
It is applied, in the zero-temperature case, to devices with either partial or full donor ionization.
A Thomas-Fermi approximation for the 7' = 0 limit is developed and shown to be appropriate for

systematic studies of the two-dimensional electron density, o_.

A suitable linear approximation

is found that provides simple and accurate analytic expressions for o_ in terms of the physical

parameters of the device.

I. INTRODUCTION

In appropriately doped planar GaAs/Al,Gaj_ As
heterostructures a quasi-two-dimensional electron gas
(2DEG) forms at the interface between spacer and sub-
strate. Its properties have been thoroughly studied both
theoretically and experimentally in recent years. The
foundations of the work on this subject were laid by
Stern and collaborators in their earlier study of the
GaAs/Al,Ga;_,As junction, [see (Ref. 1) and references
therein] where the reliability of several of the approxi-
mations currently used for heterostructures is carefully
discussed. A recent and representative quantal calcula-
tion of the electron gas distribution in a heterojunction
is presented in Sec. IVB of Ref. 2. The interest in
heterostructures has increased recently since they form
the basis of more complex devices like single or multiple
quantum wires and quantum dots. A better understand-
ing of these more complex systems requires having not
only a good quantitative description of the properties
of the electron gas in the simple, ungated, planar het-
erostructures but also an easy interpretation of the role
of the different physical quantities in determining these
properties. These are the objectives of this work.

We will first focus on improving the efficiency of the
currently used iterative approach, and second we will
show that the Thomas-Fermi approximation provides an-
alytic expressions that clarify the physics relevant to the
problem, while still being sufficiently accurate for a quan-
titative comparison with data on the two-dimensional
electron density.

For simplicity we shall treat only the zero-temperature
case, although most of the results of Sec. II are easily
extended to finite temperatures, as will be briefly dis-
cussed. It is, however, important to remark that our
model applies only when the device is in thermodynamic
equilibrium, i.e., when the Fermi level is the same at all
points. This requirement may be difficult to guarantee in
experimental devices at low temperatures due to the spe-
cial properties of the DX centers, which lead to rather
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long times for capture or emission of the electrons by the
donors. A meaningful comparison with experiment can
be made only when these specific equilibrium conditions
are guaranteed. To enlarge the domain of application of
our methods we have included, as one of our particular
cases, a model with two kinds of donors, deep and shal-
low, which has been proposed as a valid approximation
to realistic conditions in some experimental devices.3

In principle, the determination of the density of elec-
trons in the spacer and substrate layers requires use of
an iterative method. One solves the Poisson equation
in the whole heterostructure, to determine the electro-
static potential acting on the electrons in the conduction
band, and then the Schrodinger equation for that poten-
tial. This is repeated until convergence to stable values.
In the usual heterostructure geometry the donors and the
2DEG are well separated by a spacer layer, so that in the
cap and donor layers the Poisson equation can be inte-
grated analytically, and in the other layers the solution
can be written explicitly in terms of a quadrature on the
electron density. In this work we will exploit this fact to
simplify that step of the iterative process. We will show
how this simplification can be applied not only to improve
the iterative solution in the case when all the donors are
ionized, as in the model of Ref. 2, but also when some
parts of the donor layer are not fully ionized, a situation
which often happens in experimental devices.*

Next, by introducing the Thomas-Fermi (TF) approx-
imation for the electrons in the 2DEG we will show that
the 2D density can be computed with good accuracy and
much less numerical effort than in the iterative process.
The TF approximation allows one to treat equally eas-
ily the partially and the fully ionized donor layer cases,
replacing all the numerics of the self-consistent process
by a determination via the Newton-Raphson method of
the zeroes of an analytic function. Finally, by introduc-
ing an appropriate linear approximation we will derive
accurate analytic expressions for the 2D density, which
allow a very simple visualization of the role of the differ-
ent physical quantities in its determination. This makes
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the study of systematic trends very simple.

In the last two sections of this work we will extend the
method to the cases when (i) a gate at negative potential
covers the surface completely, and (ii) there is a small
concentration of acceptor states in the substrate. We
will show that the same approximations are applicable
to these devices.

II. THE SELF-CONSISTENT APPROACH

Case 1: Fully ionized donors. We begin with the sim-
plest case: that of a conventional planar heterostructure
like the one considered in Ref. 2, where the full donor and
cap layers are ionized. The details of that heterostruc-
ture are given in their Fig. 3: Starting from the exposed
surface, there are (i) a GaAs cap layer, of thickness c and
doped with a constant donor number density p., (ii) an
Al,Ga;_,As donor layer, of thickness d and doped with
a constant number density pq, (ili) an Al,Ga;_,As un-
doped spacer layer of thickness s, and (iv) a thick GaAs
substrate layer. We choose the z axis perpendicular to
the layers, with the origin at the exposed surface. As
is customary we assume that the surface states produce
Fermi level pinning, and choose the energy of the elec-
trons trapped in these states as the reference zero of
energies, thus setting to zero the Fermi level energy of
the 2DEG. We shall write as e¢, the binding energy of
these states with respect to the bottom of the conduc-
tion band. For the device parameters considered in Ref.
2 the conduction band energy, as shown in their Fig. 4,
is such that all the donors are ionized, and the electrons
distribute themselves between the 2DEG, with number
density p.(z), and the surface states, with surface num-
ber density o,. The electrostatic potential resulting from
the integration of the Poisson equation is analytic in the
cap and donor layers, so that including the boundary
conditions at the surface, the energy of an electron at
the bottom of the conduction band is

e®(0 <2< 21)=ed, — 272, 4 2 Pe 22, (1)
€1 261

eP(z1 < 2 < z2) =eB(2q) — 62‘:_s(z —21)
2

+62&21(Z - 21)
€2

+62&(Z —21)% + e®y, (2)
282

where we have defined 2; = ¢, zo0 = ¢+ d and e®; is
the discontinuity due to the band offset between the two
materials. The dielectric constants are written as &; for
GaAs and ¢; for Al,Ga;_,As. At the boundaries be-
tween the two materials the continuity of the potential
and of the normal component of the electric displacement
has been imposed. Since the electron density is nonvan-
ishing in the spacer and the substrate, the corresponding
expressions require a quadrature:
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66(22 <z< 23) = 6‘1’(22) + e@'(zz)(z — 22)
2,z

_ dz' (z — 2')pe(2))
€2 22
+e¢exch(z)» (3)

e®(z3 < 2) = e®(23) — edy + Z—Zeqﬂ(zs —0)(z — 23)
1

2 pz
_e / dz' (z — 2')pe(2’) + €Pexen(2),
131 z3

(4)

where z3 = z; + s, and exchange effects are included
either in the Slater approximation

¢? (3pe(z))”3, 5)

4me(z) 7r

eée)(ch (Z) = -

or in the Hedin and Lundqvist® parametrization as pro-
posed by Stern and Das Sarma.! The latter takes account
of correlation effects as well. It can be easily checked that
the charge neutrality condition is

05 +0_ = pcc+ pad, (6)

where

oo
o_ = / pe(2)dz. (7
22
This guarantees that the electric field vanishes when
z — 00, as it should. Equations (1) to (7) determine
the potential completely once p.(z) is known. The latter
is computed from the solutions, ¥, (z), of the Schrodinger
equation:

R®d 1 d¥
= ™ 4 e®(2)T,(2) = E, T 8
2 dzm*(2) dz + e®@(2) ¥, (2) n¥n(2) (8)
and the occupation factors v, per unit area correspond
to free motion in the z-y plane. For a finite temperature,

T, they are given by
Er —E,
R 9
kgT )} ’ (9)

*
RACTEN

where in our convention Er = 0. We shall restrict
our study to devices operated at temperatures of a few
kelvin. Then the zero-temperature occupations can be
safely used in the determination of the electron density
and we write

n

1+exp<

pe2) = 3 1B Dy, ()2, (10)

2
neEb.s. mh

with the sum extended over the bound states and the
wave functions ¥,(2) are normalized to unity. For the
rounding off of the discontinuities due to the band offsets
we follow the method of Stern and Das Sarma.!

Since the potential is an input to the Schrodinger equa-
tion, the determination of p. and e® must be done itera-
tively. One makes an initial choice for e®(z) (we choose
the Thomas-Fermi solution as described in the next sec-
tion), obtains p.(z) from Egs. (8)—(10), and o_ and o,
from Eqgs. (6) and (7), and finally substitutes these into
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Egs. (1)-(5) to generate a new e®. Then the process
is repeated until convergence to stable values. The self-
consistent solutions that we obtain in this way for the
device of Ref. 2 are shown in Fig. 1(a) for our choice of
parameters: ep, = 0.67 eV, e®, = 0.23 eV, €,.7 = 13.2,
€r2 = 12.2, mi/m = 0.067, and m}/m = 0.088. The
agreement with Fig. 4 of Ref. 2 is quite satisfactory.
In our calculation the effect of the exchange terms was
included in the Hedin and Lundqvist (HL) approxima-
tion. However, the differences in the shape are negligi-
ble if the simpler Slater approximation is used instead.
In Table I we give our result for the two-dimensional
electron density o_ using the HL parametrization. This
will be used as reference for the further approximations
to be introduced in later sections. The effect of using
one or the other prescription for the exchange terms
is very small: with the Slater approximation we find
o_ = 0.0026 nm~2, the same value found when exchange
effects are completely neglected.

Case 2: Only one kind of donor, partially tonized. De-
pending on the geometrical parameters of the device and
the amount of doping, the minimum energy of the con-
duction band in the donor layer could be so low that for
some z it would be lower than the energy required to
ionize the donors; then the assumption of complete ion-
ization of the donor layer is no longer appropriate. As an
example of this kind of device we study the heterostruc-
ture used by Laux et al.® as a starting point for their
quantum wire calculations. In their model the donors
have a unique ionization energy e®; = 0.05 eV and the
sizes of the different layers and the amount of doping
can be found in that reference. We will omit in this sec-
tion the effect of the acceptor states in the substrate,
which will be treated later, in Sec. V. Under these con-
ditions there is a zone inside the donor layer, z; < z < z,,
where the donors retain their electrons, and there is no
net charge in it. The bottom of the conduction band is
flat, e®(z) = e®;, and there is no electric field. For that
the left ionized part of the donor layer, [z1, z;], plus the
cap layer, must have the same number of charges as the
surface:

(11)

and the right ionized part of the donor layer, [z,, 23],
must have the same charge as the 2DEG:

05 = pc21 + pa(z1 — 21);
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TABLE I. Two-dimensional electron densities for several
devices: case 1, Tan et al.; case 2, Laux et al.; case 3, Fletcher
et al. The different approximations are discussed in the text.

o_ Case 1 Case 2 Case 3 Case 3

Set 1 Set 2
Fully quantal 0.0027 0.0046 0.0060 0.0062
Thomas-Fermi 0.0026 0.0051 0.0069 0.0069
TF + linear 0.0027 0.0052 0.0063 0.0065

In this situation there are two completely decoupled sets
of conditions that determine the equilibrium charges for
the surface and the 2DEG: for the external part of the
device, 0 < z < z, Egs. (1) and (2) apply, and the
values of z; and o, are determined by Eq. (11) and the
condition

e®(z) = e®;. (13)
The solution is analytic:
zZ] = (1 - E—2> z1
€1
2 C 2 ®, — P;
+\/z§5—§ (1—5”’ )+ =2 e(¢’: b= %) (1
e €2Pd e2pq

with o, given by Eq. (11). For the zone, [z,, 0], the so-
lution is obtained via a self-consistent process analogous
to that in the full ionization case, but now the condition
for charge conservation is Eq. (12) instead of (6) and the
potential in the zone [z,, 22| is written as

2 Pd

e®(z) =ed; +e 2%,

(z — z,)2. (15)
The iterative solution is started with an initial guess for
the electrostatic field, e®(z), in the spacer and substrate
(which we again choose as the solution in the Thomas-
Fermi approximation.) Next the Schrédinger equation is
solved and the electron densities are constructed using
Egs. (10) and (7). From Eq. (12) a value for z, is
determined and the electrostatic field is computed from
Egs. (15) and (4). Then the whole process is repeated
until stable values are obtained.

Results given by this self-consistent method are shown

in Fig. 1(b). Our computed value for the two-
o_ = pd(z2 — 27). (12) dimensional charge density, o_ of Eq. (7), for the model
0.7 % 0.7 % 0.7 %
- v - - =
0.6) (@ ol 06 (b) o B - FIG. 1. (a) Conduction
0.5 _ 0.5 0.5 band edge for the device of Tan
o 0.4 o 0.4 2 0.4 et al. (Ref. 2), the continuous
g = line is the fully quantal result,
250. . 0.3
%00 ’ ?0 ! ? whereas the dashed line is the
] 0.2 5 0.2 5 0.2 prediction of the Thomas-Fermi
0.1 0.1 0.1 approximation. (b) Same for
0 0 0 the device of Laux et al. (Ref.
0.1 0.1 v 0.1 . v 6) and (c) same for the device
0 10 20 30 40 50 60 70 80 0 20 40 60 80 100 120 0 20 40 60 80 100 of Fletcher et al. (Ref. 3).
z (mm) z (o) z (nm)
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device studied by Laux et al.® is given in Table I. We
use the same parameter set as in that reference, but
again include the Coulomb exchange effect in the Hedin-
Lundqvist parametrization. When we omit that term
our value is changed to o_ = 0.0044 nm~2, in agreement
with that found by Laux et al. We shall see in Sec. V
that the inclusion of a small density of acceptor states
does not change this value.

The above analytic expressions show explicitly a re-
markable property of case 2 devices: any increase in the
thickness of the donor layer above the critical value for
which the neutral zone appears, leaves unchanged all the
properties of the 2DEG, so that they behave as single
junctions, decoupled from the surface.

Case 8: Two kinds of donor states, shallow and deep,
the latter partially ionized. To get closer to the experi-
mental conditions of some devices we now study a model
introduced by Fletcher et al. in Ref. 3. These authors
allow for two kinds of states in the donor layer: shallow
and deep. The binding energy for the shallow state is as-
sumed to be negligible, and that of the deep state will be
written as e®,. The densities of both kinds of states will
be written as p, and p, and their sum by py as before.
As in the previous case, we will not include the effect of
the acceptor states, which is left for Sec. V.

In the zone 0 < z < 2, Egs. (1) and (2) still apply,
and the position of z; is now determined by the condition
that the energy of the conduction band should equal the
binding energy of the deep donors. Here we use this
condition to relate o, to z;:

ed + %pdu2
2(z u

(a+2)

where we have introduced auxiliary quantities by defining

(17)

05 = pcz1 + , (16)

u=2z— 2z,
2
- é 2
e® =ep, — 2——pcz1 +edPy — ed,.
€1

Now in the zone [z, 2,] only the shallow donor states are
ionized, so that

2
e®(21 <2< 2) = €@ — — (04 — pez1 — pau)(z — 21)

2

e
+—ps

_ 2
262 (Z ZI) !

(18)
and the point z. is again determined by the condition
of the equality of the conduction band energy and e®,.
This gives
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2
zr = 21+ — (05 — pcz1 — pPatt). (19)

8
Note that in this case the positive charge in the central
zone, [z1,2,], is exactly twice the net negative charges
in the left and in the right zones, which are equal. Note
also that when p, — 0 the results of the previous case are
easily recovered. Finally, in the remainder of the donor
layer

2
e

eP(z, <2< 23) = P, + ;—(0‘, — pcz1 — pau)(z — zr)
2

o2

20
25, " (20)

+ (z — 2)?,
and in the spacer and substrate, Eq. (3) again applies.

The charge neutrality condition reads:

0_ + 05 = pec+ pad — pz(2r — 21). (21)

We again start the iterative solution with the Thomas-
Fermi as an initial guess for the electrostatic field. Then
from the solutions of the Schrédinger equation the elec-
tron densities p.(z) and o_ are constructed. Using Egs.
(16) and (19) it is easy to check that the charge neu-
trality condition Eq. (21) determines implicitly a new w.
We determine it using the Newton-Raphson algorithm
and then from Egs. (16) and (19) determine a new set
of values of o,, 2, and 2, that allow one to construct
the new field. The sequence is then repeated until stable
values are obtained.

We take here as a reference the device of Fletcher et
al., and more specifically choose two of the sets of val-
ues of e®, and r ps/pz, from their Table II. The
first set corresponds to the device shown in their Fig.
8: ed, = 0.180 eV, » = 0.269, and the second to
e®, = 0.190 eV, r = 0.430. Our self-consistent so-
lution for the conduction band profile is shown in Fig.
1(c) for the first parameter set, results for o_ for both
sets are given in Table I. Here the differences due to the
Coulomb exchange contribution are more sizeable: omit-
ting that term we find o_ = 0.0056 nm~2 for set 1 and
0.0055 nm~2 for set 2.

Tunneling into the donor layer. The applicability of
our model to the Fletcher et al. device can be ques-
tioned because the width of the spacer layer is very small,
s = 1.67 nm, and, therefore, tunneling of the electrons of
the 2DEG into the donor layer might be non-negligible.
We have performed a calculation allowing for that effect,
including terms due to the electrostatic potential of the
2DEG electrons also in the donor layer up to a depth of 10
nm (counted from the spacer boundary z.) This makes

TABLE II. Two-dimensional electron densities for the same devices as in the previous ta-
ble, but including nonvanishing acceptor densities. Cases 1 and 2, po = 1077 nm™3; case 3,
pa = 3.1077 nm~3. The different approximations are discussed in the text.

Case 1 Case 2 Case 3 Set 1
o o_ G- o_ [ o_
Fully quantal 0.0027 0.0022 0.0046 0.0042 0.0060 0.0053
Thomas-Fermi 0.0026 0.0024 0.0051 0.0047 0.0068 0.0061
TF + linear 0.0027 0.0023 0.0052 0.0047 0.0063 0.0056
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equations such as (19) inappropriate, and the numerical
process becomes considerably more involved. Our results
for such a calculation can be summarized as follows: (a)
o_ is unchanged. (b) We find two bound solutions to
Eq. (8), whose energies differ by less than 1 meV from
those obtained when no tunneling into the donor layer is
allowed. The wave functions for the lowest solution with
and without tunneling are indistinguishable in the spacer
and the substrate, and the tunneling into the donor layer
is strongly damped. The changes are noticeable for the
second bound wave function, the main effect of allow-
ing for tunneling being an overall shift by 2 to 3 nm of
the shape of the wave function towards the donor layer.
However, since that state is very weakly bound the corre-
sponding occupation factor, v, is always small and these
changes have little effect on the total electron distribu-
tion. We therefore omit any further discussion of this
more involved calculation.

The structure of the donors. In developing the pre-
vious three cases we have not set out explicitly the as-
sumed nature of the donor centers. We have tried only
to give a broad coverage of the different cases that have
been already considered in the literature. But although
the subject is still somewhat controversial, there appears
to be a growing consensus on the nature of the deep
donors or DX centers and a better understanding of their
properties.® Therefore, we wish to emphasize that the
above methods are quite appropriate to describe donor
layers containing such centers in full or in part, if the
validity of the model proposed by Chadi and Chang is
confirmed. The mechanism invoked by these authors for
the formation of a DX center is 2d° — d* + DX, so
that in a Si doped Al,Ga;_,As alloy with = > 0.22 it is
energetically favorable to form, out of a pair of neighbor-
ing neutral Si atoms (d®), one positively ionized Si (d")
and one negatively ionized DX ~ center. When the latter
is ionized DX~ — dt + 2e~, one is left with two elec-
trons and two positively ionized d* centers. The distri-
bution of charge after ionization is thus identical to that
which would be found for, e.g., shallow donors, provided
there is enough energy available for the ionization of the
DX center: two Si* ions remain in the donor layer and
two electrons are transferred to the 2DEG. Let us now
consider specifically the model heterostructure used to
illustrate the case 1 devices: The conduction band edge
is shown in Fig. 1(a). It can be seen that it has a mini-
mum in the donor layer of about 165 meV. If, to specify
a model parameter not given by Tan et al., we make the
assumption that in this heterostructure the DX center
ionization energy is smaller than that, say 150 meV, then
the full ionization condition is indeed appropriate and
the case 1 model is perfectly suitable for this device. For
other parameters it may happen that the full ionization
conditions do not apply. This is why we have considered
in detail case 3 for the devices of Fletcher et al. The
assumed ionization energy of the deep donor level con-
sidered in this Case is of ~ 180 to 190 meV, which are
typical values found for a DX center, so that this model
is appropriate for a donor layer where only part of the
DX centers have emitted their electrons.

Of course in that part of the donor layer where the en-
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ergy is not sufficient for ionization, pairs of d* and DX ~
centers will remain. However, the mechanism of forma-
tion guarantees that the members of each pair are close
enough that one can safely neglect their mutual distance
in computing the electrostatic potential, and assume zero
net charge. Note that this is very similar to the approxi-
mation made when the charges of each individual ion in
the ionized donor layer are replaced by a uniform distri-
bution.

IIT. THOMAS-FERMI APPROXIMATION
FOR THE ELECTRON GAS

We turn to this approximation guided by its success in
atomic physics, mainly in the prediction of global prop-
erties of the atom and their dependence on parameters
governing the bulk behavior of the system, such as vari-
ation in the size of the atom with respect to number
of electrons, etc. Here we try to obtain estimates for a
bulk quantity like o_, rather than an accurate descrip-
tion of the electron distribution along the z axis (whose
analogue in the atomic case would be the radial elec-
tron distribution). We find good results not only for the
2D density but also for the z dependent electrostatic po-
tential seen by the electrons, so that the Thomas-Fermi
solution turns out to be also a useful starting point for
the iterative solution of the fully quantal problem.

We begin by making the conventional approximation
for a 3D electron Fermi gas at zero temperature, so that
the local potential and density are related by

1 2m* 3/2
=32 (——}ET e@(z)) O[—e®(z)]. (22)
From the results in the previous section we expect the
Thomas-Fermi density to be nonvanishing only in the
substrate. We thus focus on this layer, and omit the
Heaviside function from now on. In addition, in the fol-
lowing the quantities computed at z = z3 will be under-
stood to correspond to the values in the substrate and
not in the spacer as in the preceding section. The Pois-
son equation, therefore, reads

2

e 2m*\ */?
e (_hz—) [—e®(2)]%2, (23)
where we neglect the small difference between the dielec-
tric constants £; and €2, and set € = €; everywhere. The
above relation is an ordinary second order differential
equation whose solution is analytic. We obtain it in two
steps to introduce more easily the appropriate boundary
conditions. Set

e2 2m* 3/2
“=m(?) : (24)

v(z) = —e®(z2).
One finds immediately that

ed’(z) =

V'(2)? = v/ (23)? + Ralo(2)¥? —v(z)¥?].  (25)

Since we are interested only in those solutions which cor-
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respond to vanishing charge when 2z — oo, this requires
that e®’(z) should also vanish in that limit, and imposes
a boundary condition that is fulfilled if

v (23) = —\/?v(z;;)‘r‘/‘l. (26)

This involves quantities that we have shown in the previ-
ous section to depend on only one independent unknown,
so that this equation allows one to determine these quan-
tities. Choosing o_ as the unknown, Eq. (26) reads

e? 4o e2|1 ,
Faa \/?{‘e"”’ T [5”60
5/4
d /
+pa | c+ 3 d—o_z3 , (27)

in case 1, whereas, for case 2 one finds instead

(28)

Both equations are easily solved numerically using the
Newton-Raphson method. This is the only numerical
step in this TF approximation, replacing the cumbersome
self-consistent process of the preceding section. This sim-
plicity is maintained in case 3, but the explicit expres-
sions are a bit more involved. We found it convenient
to choose u as the unknown, and then placing in Eq.
(26) the results of Egs. (20), (19) and (16), one finds
an analytic expression of similar structure to that of the
two equations above that can again be solved using the
Newton-Raphson method.

The Thomas-Fermi predictions for the three devices
studied in the preceding section are shown in Table I.
It can be seen that in all cases there is a satisfactory
agreement with the fully quantal result. However, what
is particularly interesting is the ability of the TF ap-
proximation to reproduce the changes in o_ when the
physical properties of a given device are modified: we
have performed a series of calculations in each of which
one of the parameters of the Tan et al. device is var-
ied by a sizeable amount and find that in all cases
the TF predictions are remarkably accurate. Some ex-
amples (Thomas-Fermi values given in parentheses) are
(1) changing the width of the donor layer to d = 25
nm leads to o_ = 0.0060(0.0060) nm~2, (2) changing
the width of the spacer layer to s = 10 nm leads to
o_ = 0.0024(0.0023) nm~2, (3) choosing p. = pg =
0.00125 nm~3 gives o_ = 0.0059(0.0059) nm~2, (4)
changing the width of the cap layer to ¢ = 20 nm leads
to o_ = 0.0059(0.0060) nm 2.

Another example of the capability of the TF model
to describe systematic trends is shown in Fig. 2, where
the reference device chosen is that of set 2 of Fletcher
et al. and o_ is plotted against different values of the
spacer thickness, s. The agreement for the larger values
of s is particularly good, and deteriorates somewhat when
s < 3 nm, but even for these values the change of slope is
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FIG. 2. Two-dimensional electron density vs spacer thick-

ness. The other device parameters are those of set 2 of
Fletcher et al.

correctly given and in both calculations the same trend
is found.

The potential in the Thomas-Fermi approrimation.
Integrating Eq. (25), the explicit analytic form of the
potential in the substrate is found to be

e®(z) = — ([—e<1>(z3)]—1/4 + \/%(23 - z))_4, (29)

whose parameters are completely determined by the solu-
tions to the previous equations. For the other layers the
same analytic expressions as for the fully quantal case
apply. The results for the devices taken as reference are
shown in Figs. 1(a) to 1(c) (dashed lines.) Comparison
with the fully quantal curves shows that although the
shapes are always very close, the Thomas-Fermi poten-
tial in the substrate is systematically shifted upwards.

Approzimate analytic solutions for o_. In case 1, and
for the usual values of the parameters, it is easy to check
that the right-hand side (rhs) of Eq. (27) varies almost
linearly with o_ in the interval 0 < o_ < 0¢, the latter
being the value for which that term vanishes:

2
ep, — % [%pcc2 + pd (c + g) d— 0023] =0. (30)

Therefore, the rhs of Eq. (27) can be well approximated
by a straight line passing through these two points:

2 5/4
{—e¢s + < [lpcc2 + pa (c+ id) d— cr_z3] }
€ |2 2
e 1 , d 5/4
< {eot S [gp v (e 5) ]}

x(1-Z2). (31)

Placing this linear approximation in Eq. (27) one solves
for o_ and finds

(0]
1+

O_la=

, (32)

>=
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where
/4 211 d e
a e

A=/ —eds + — | =pcc? —) .
5{ e¢+6[2pc +pdd(c+2]} z3

(33)

These two equations provide the desired analytic approx-
imation to o_ and as we will see below their predictions
are remarkably accurate. However, we want first to dis-
cuss their physical interpretation. The meaning of g is
simple: the left hand side of Eq. (30) is the potential
drop from the surface to the junction including the con-
tribution of an electron gas of zero width and density og
located at the junction (z = z3), and which satisfies the
charge neutrality condition, Eq. (6). Therefore, Eq. (30)
is the condition that a strictly two-dimensional electron
distribution would have to satisfy to guarantee the van-
ishing of the total potential at infinity (and everywhere
in the substrate in this particular case). Note next that
since A in Eq. (33) is positive, the denominator in Eq.
(32) is greater than one, and thus o_ |, < 0 always. In
other words since the real electron gas has a finite thick-
ness, the total charge required to bring e®(z) to zero
when z — oo is always smaller than that for a zero width
gas. The reason for this reduction can be easily visualized
in the following rather simplified model of the electron
gas: assume that all the electrons are located in a slab
between z3 and z3+w, with constant density, p_ = oy, /w,
and with o, satisfying the charge neutrality condition.
In this model, the requirement: e®(z > 23 +w) = 0 leads
to

Jo

Ow = T
1+E

(34)
which is of the same form as the linear approximation
result and confirms the physical interpretation of the in-
equality o_ < gg. Still this same model gives some phys-
ical support to the definition of an effective thickness,
Weg, for the true electron gas by equating the rhs of Egs.
(32) and (34), leading to

Weg = 223/A, (35)

and, in particular, to the “reasonable” value, w.g = 10.6
nm, for the device of Tan et al.

The physical parameters characterizing a device, like
donor densities and thicknesses of the layers appear ex-
plicitly in expressions (32) and (33), so that their role
in determining o_ is clear. Note, for instance, that the
band offset, e®;,, does not appear explicitly, as was the
case already in Egs. (27) and (28), so that the Thomas-
Fermi results are only sensitive to the value of e®; to the
extent that it determines whether the device has to be
described as case 1 or case 2. More will be said on the
role of the other parameters in the case 2 configuration,
which we will discuss later. The numerical estimate given
by Egs. (32) and (33) for the Tan et al. device is shown
in Table I: it happens to coincide with the exact quan-
tal result. More representative of the average accuracy
of these expressions are the predictions for the modified
devices already considered when studying the accuracy
of TF. The values predicted by the linear approximation
turn out to be (1) 0.0063 nm~2, (2) 0.0025 nm~2, (3)
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0.0062 nm~2, and (4) 0.0063 nm~2. The differences with
TF are, thus, typically less than 5%.

In the partial ionization case the linear approximation
is also found to be useful. We approximate the rhs of Eq.
(28) as

where, now, o is defined by the condition

e? [ a2
ePy, —ed; — — | — +0ps) =0. (37)
€ \2pd

Solving Eq. (28) with this approximation we find

. [ !
—,La. =
e% %(E‘I’b - e@,‘)5/4

+ ! ] . (39

—pas + pay/s? + Ze(ePy—c¥y) efb,;eq)‘

Here, too, the simplicity of the explicit expression makes
it easy to study the role of each parameter analytically.
For instance, one finds that o_ ; 5. increases when one of
the following changes happens: (a) e®, — e®; increases,
(b) the thickness of the spacer layer, s, decreases, (c) the
donor density, p4, increases (in this case, however, the
thickness t = z; — 2, of the ionized layer decreases). The
prediction of this approximation for the device of Laux
et al. is also shown in Table I: again, it can be seen that
the agreement with the TF result is excellent.

The same linear approximation for [—e®(23)]*/4 can be
implemented for case 3 devices. However the expressions
for 0o and for the value of e®(z3) when o_ is set to zero
are no longer analytic. Combining Egs. (15), (18), and
(20) one can find an analytic but cumbersome expression
for u = u(0—). Then v(23) can be computed for a given
o_, but there is no analytic solution for oo, which has
to be determined numerically. Still an expression for-
mally identical to Eq. (32) applies again and once oy is
known it determines the corresponding o_ ... Values for
the two parameter sets of the Fletcher et al. device are
given in Table I, showing that the accuracy of the linear
approximation is satisfactory in this case as well.

IV. HETEROSTRUCTURE WITH A GATE
COVERING ITS SURFACE COMPLETELY

This configuration can be studied by introducing a
small formal change in the previous expressions: a gate
at a negative potential, Vg, relative to the substrate
pushes the conduction band at the surface upwards by
eVy. Therefore the form of Eq. (1) appropriate for this
new boundary condition is just

e®(0<2<2z)=¢eV, +ep, — 222, + ezﬁc—zz, (39)
€1 251
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FIG. 3. Variation of the two-dimensional electron density
with gate potential (absolute values) for the Laux et al. (Ref.
6) device. Continuous line, fully quantal result; dashed line,
Thomas-Fermi prediction; double dashed line, linear approxi-
mation to TF. The diamond and the cross on the z axis mark
the position of the pinch-off potentials.

and all the subsequent expressions remain the same ex-
cept for the replacement of ed, wherever it appears by
eVy + ed,. As an application of our methods we show
in Fig. 3 the variation of o_ vs V, for the fully quan-
tal and the Thomas-Fermi approximations. Again, the
predictive power of these approximations is quite appar-
ent. The transition from case 2 to case 1 behavior can
be easily seen in the line corresponding to the quantal
calculation. The Thomas-Fermi results do show also this
transition, but it takes place when V; is much closer to
zero. In the linear approximation the change produces
a discontinuity: the case 1 behavior is indicated by the
cross at V; ~ 0.

Note that, as already shown by Davies,” the pinch-off
potential can be obtained directly from Egs. (1) and (2)
by requiring Vg ;o to be such that e®(z > 23) = 0. Since
then the electron density, pe(z), and the electric fields in
the spacer and in the substrate all vanish, from the above
equations one easily obtains that

2 dz
Voo = — 2(PeC L Pd g PAT ) (40
eVg po ed, +e (512+51c +€22 (40)
In Fig. 3 the value of V. is shown as a diamond,
whereas the slightly different estimate shown as a cross
on the z axis corresponds to the simplification made in
deriving the Thomas-Fermi equations: 2, = £, = 13.2.

V. HETEROSTRUCTURES WITH
ACCEPTOR STATES IN THE SUBSTRATE

Until now we have been assuming that there were no
acceptor states in the devices under study. This has
allowed a simpler presentation of our method and the
main results. However, under realistic conditions there
is always a small but non-negligible density of acceptor
states, p,, in the substrate. We shall now include the
effect of these states. The presence of the acceptors fixes
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the asymptotic value of the electrostatic potential in the
substrate, when z > 2,:

e®(z > z,) = Eg — E,, (41)

where E4 and E, are, respectively, the forbidden band
gap and the acceptor’s binding energy (referred to the
top of the valence band), and z, is the limit of the de-
pletion layer, that is, the lowest z that satisfies Eq. (41).
The effect of the donor states is to capture electrons that
otherwise would have been in the electron gas or in the
donor layers, so that the contribution of an additional
negatively charged layer, [z3, 2], With constant density
po has to be included in the expressions derived in previ-
ous sections. It can be checked that formally Egs. (1)—(3)
remain unchanged, whereas Eq. (4) for the potential in
the substrate now contains an additional contribution:
ed®P(z3 <2< 2,) = —ezp—a(z — z3)2. (42)
2e 1
Due to the smallness of the usual acceptor densities, typ-
ically p, ~ 10~7 nm~3, the density of the electron gas
is much bigger than p, for z close to z3, but since it
decreases exponentially when z — oo, at large z the sit-
uation is reversed and p. becomes completely negligible
compared to p,. Therefore, it is useful for the numeri-
cal computation to introduce a point z4 beyond which p,
can be taken as vanishing for all practical purposes. (At
this point the numerical integration of the Schrédinger
equation is stopped.) Beyond z4

e®(z4 < 2 < 2,) = eP(24) + e (24)(2 — 24)

_ezé—);;(z - z4)2, (43)

and applying Gauss’s theorem to the slab [z4, 2,]
ed’'(24) = ez—p—a(za — 24). (44)
€1

Particularizing Eq. (43) to z = z,, one finds

Za = 24 + \/2€1[Eg - Ea - 6@(24)] : (45)

€?pq
which determines z, in terms of z4. Then
00 = pa(za — 23) (46)

and the total negative charge in the substrate is

6_=0_+40,. (47)
This new charge density, §_, now replaces o_ in the
charge neutrality conditions previously written, Egs. (6),
(12), and (21). With these additional terms one can re-
peat the same self-consistent processes described in the
previous sections for the three cases considered, without
further modification. As an illustration of the results
found, the conduction band edges for the same three de-
vices previously considered are shown in Fig. 4, with ac-
ceptor densities corresponding to those quoted by Laux
et al. and Fletcher et al. for cases 2 and 3, respectively,
and with p, = 10”7 nm~3 for case 1. The profiles are
very similar to those found for vanishing acceptor densi-
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ties except in the substrate: away from the junction the
linear increase due to the electric field of the negatively
charged acceptors is clearly seen. Numerical results for
the two-dimensional charge densities are given in Table
II. In all cases studied, the values for 6_, are very close
to those found for o_ in absence of acceptor states, so
that the main effect of these states is to transfer part of
the negative charge from the gas to the acceptor traps.

The results for the two-dimensional density for cases
2 and 3 are in good agreement with those quoted in the
original references. It should be stressed however, that
for the case 3 device we determine these electron densities
self-consistently without resorting to further approxima-
tions. This appears to be in contradiction to the method
apparently followed by Fletcher et al.3 since, as indicated
in the caption of their Fig. 8, they replace the poten-
tial in the substrate by a linear approximation that does
not appear to satisfy the correct asymptotic behavior at
z — oo. In addition, reading from what is shown in the
same figure, it appears that Fletcher et al. use a dif-
ferent value for the binding energy of the surface states,
eps. Therefore, it is likely that the agreement between
the two calculations is in part fortuituous.

The Thomas-Fermt model. The use of this approxima-
tion now requires a careful discussion of some additional
approximations. The Poisson equation in the substrate
reads

2, 2
ddz;{) = _e?[pe(z) + Pals

and, again, it is convenient to consider two separate
zones. We will assume that a z; exists such that for
z < zi, the acceptor density p, on the r.h.s. of the Pois-
son equation can be neglected compared to the Thomas-
Fermi p(z). Under these conditions the same deriva-
tion made in the no-acceptor case can be formally re-
peated and one recovers Eq. (25). However the bound-
ary conditions at z = 23 and z = z; must now be re-
defined. Since one wants to determine the full electro-
static potential, the electric field and potential at z = 23
must be constructed so as to include the contribution
of the negatively charged acceptor states. This is guar-
anteed when the charge neutrality condition, including
their contribution, is imposed. Thus, e.g., we now re-
quire —v'(z3) = e®'(z3) = (e /e) 7_.

To discuss the boundary conditions at z = z;, we par-
ticularize Eq. (25) to this point:

(48)

V(z)? - v (2 = galu(=)¥ - ()% (49)
Let us make more precise now the choice of 2, fixing it by
the condition that the solution of the above differential
equation be such that
2

v'(z¢) = —e®'(24) = O (50)
In doing so we have again neglected the small amount of
acceptor charge in the interval [z3, z;]. With this choice
of z;, the left-hand side of Eq. (49) is proportional to the
difference between the squares of the densities 6_ and o,.
For the small values of p, that we are considering it is,
therefore, quite safe to neglect the second term, v’(z)?,
compared to the first, v'(23)%. A similar argument can be
applied to the rhs of Eq. (49), so that after making these
approximations the boundary condition that results is
again formally the same as Eq. (26) but now both mem-
bers include the contribution of &_ instead of o_. The
derivation of the equations appropriate for the different
cases now proceeds as in the no-acceptors case, and the
new Egs. (27) and (28) are also formally identical to the
old ones, but again with the replacement of o_ by 6_.
Correspondingly, the numerical values now determined
for 6_ are identical to those for o_ in the no-acceptor
case. Being consistent with the previous approximations
we determine the two-dimensional acceptor density as

a _Ea
o, = [2ep (Eg2 )’
e

and this gives for the two-dimensional density of the elec-
tron gas

(51)

(52)

o_=0_ —0g4.

The numerical predictions are included in Table II, and
the conduction band edge profiles are also shown in Fig.
4.

VI. SUMMARY AND CONCLUSIONS

The present work has focused on the description of the
electron charge distribution and conduction band edge
profiles in GaAs/Al,Ga;_;As heterostructures. First,
we have presented the fully quantal description of de-
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vices with different degrees of ionization of the donor
layer, and have formulated an efficient method for their
self-consistent solution. Next, we have developed sim-
pler but still sufficiently accurate models for the study of
the systematics of the two-dimensional electron density.
We have shown that the Thomas-Fermi approximation
is well suited for these purposes, and that when comple-
mented with a linear approximation it provides analytic
expressions that relate the 2DEG density to the physi-
cal parameters of the heterostructure. These expressions
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make very transparent the effect of changes in the char-
acteristics of the layers on the properties of the 2DEG.
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