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1. INTRODUCTION 

 

Organometallic halides, and specifically [ 5(C5H5)2]M (metallocene) halides, have been 

found to be of great interest to industry due to their applications in synthesis and in 

catalysis, and also due to their role as cytostatic and anti-carcinogenic substances. The 

fluorinated organometallic compounds may present properties of relevant interest in 

comparison with their chlorinated, brominated and iodinated analogues, in spite of the 

fact that the last ones have been subject of more attention. 

 

Typically utilized fluorinating agents tend to be hazardous and selective. Finding 

compounds that can appropriately act as reactants, providing reasonable yields and 

reaction rates within achievable conditions, as well as minimizing the risks derived from 

their use, is one of the main interests of chemists. Ernst et. al1 propose sulfur 

hexafluoride, SF6, as a fluorinating agent from the basis that this compound has been 

found to react with both early and late low-valent organometallic and inorganic 

compounds, and experimentally verifies in their work that SF6 readily acts as a fluorine 

donor in the reaction with [ 5(C5H5)2]V, yielding [ 5(C5H5)2]VF. 

 

In the present work, a theoretical study, performed using Density Functional Theory 

methods, of the capacity of SF6 to be a fluorinating agent to vanadocene. Our main aim 

is, firstly, to determine the thermodynamic and kinetic profile for the forementioned 

reaction. High spin and low spin states of vanadocene, as well as its high spin and low 

spin fluorinated derivatives, and the corresponding sulfur fluorides. 

The present work is divided in seven chapters, being the first one this introduction. In 

chapter two, the theoretical background is briefly presented without expanding on the 

mathematical details underneath it. Chapter three comprises a review of the available 

references to describe remarkable aspects of the family of molecules that takes part on 

the studied reactions (i.e. Metallocenes and sulfur fluorides), as well as reported models 

which, once applied to those compounds, set a basis to understand their properties, 

structure and reactivity. Chapter four is the main section, explaining the calculations 

done and their analysis. Chapter five briefly remarks the conclusions that arise from the 
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discussion in chapter four. Finally, chapter six contains all the external references 

utilized along the work; and chapter seven, the appendices, includes additional data and 

information related to the calculations and the discussion that, in spite of not being of a 

crucial importance to understand this work, contains data that supports the information 

developed along the discussion. Thus, this work offers an introduction to the 

fluorination reactions of vanadocene compounds with SF6, focusing on the mono-

fluorination of the high spin vanadocene and obtaining a transition state for this 

reaction. 
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2. METHODOLOGY2,3 

 

2.1. THE SCHRÖDINGER EQUATION 

 

According to Quantum Theory, in each instant the state of a system is completely 

described by a wave function expanded in the Hilbert space, a complex vectorial space 

which fulfills the properties of the scalar product. Mathematical (and, in most of the 

cases, Hermitian) operators can be applied over the wave function to obtain properties 

related to the system. The Hamiltonian operator is of central interest to Quantum 

Chemistry as it allows to obtain the energy of the system represented by the wave 

function by means of the time-dependent Schrödinger equation 2.1 

           

                  (2.1) 

However, for Quantum Theory applications involving the study of stationary states, it is 

possible to consider the time-independent Schrödinger equation 2.2. 

              (2.2) 

Where  is the Hamiltonian operator;  is a normalized wave-function and E is the 

energy. Unfortunately, except for the simplest cases, the Schrödinger equation cannot 

be exactly solved, as will be stated in section 2.3. 

The Hamiltonian of a system with nuclei and electrons can be expressed as a sum of 

different contributions. 

           (2.3) 

 Where  is the nuclear kinetic energy operator;  is the electronic kinetic energy 

operator,  is the internuclear repulsion potential energy,  is the interelectronic 

repulsion potential energy and  is the electron-nucleus attraction potential energy. 

When replacing each term for the corresponding quantum expression, in atomic units, 

we obtain expression 2.4 
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         (2.4) 

Where i and A are the subscripts for the electrons and the nuclei respectively; MA and ZA 

are respectively the mass and the nuclear charge of the nucleus A; riA is the distance 

from electron i to nucleus A; and RAB is the distance between nucleus A and nucleus B. 

 

2.2. THE BORN-OPPENHEIMER APPROXIMATION 

 

A central approximation to quantum chemistry is the Born-Oppenheimer 

approximation, introduced by Max Born and Julius Robert Oppenheimer4, based upon 

the assumption that since nuclei are much heavier than electrons, they move more 

slowly, and thus the nuclear motion can be separated from the electronic motion, that is, 

considering the electrons in a molecule to be moving in a field of fixed nuclei. The main 

point is that the resolution of the system can be done in two different steps that involve 

the resolution of an electronic problem and a nuclear problem (but, noticeably and 

against what is used to be stated about the Born-Oppenheimer approximation, those 

steps are not independent, or the two problems are not separable: to solve the nuclear 

problem, first the electronic problem need to be solved, because the resolution of the 

electronic problem strongly influences the result obtained from the resolution of the 

nuclear problem). Equation 2.5 explicitly shows the separation of the total Hamiltonian 

into a nuclear Hamiltonian and an electronic Hamiltonian. 

              (2.5) 

With, 

             (2.6) 

            (2.7) 
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 is the eigenvalue of the electronic Hamiltonian. The eigenfunction of the electronic 

Hamiltonian depends explicitly on the electronic coordinates and parametrically on the 

nuclear coordinates, thus the electronic energy depends on the position of the nuclei, 

          (2.8) 

Where  is the electronic wave function, which also depends explicitly on 

ri and parametrically on RA, so that can be obtained for fixed values of RA. The same 

assumptions can be made to solve the nuclear problem: The eigenfunction of the nuclear 

Hamiltonian depends explicitly on the nuclear coordinates, as shown in equation 2.9, 

and for an averaged electron field the motion of the nuclei can be determined. 

           (2.9) 

Thus the Born-Oppenheimer approximation to the total energy includes electronic, 

vibrational, rotational and translational energy. 

The nuclear Hamiltonian can be expressed then, from eq. 2.7, as: 

           (2.10) 

With, 

           (2.11) 

U(RA) is a function of the coordinates of the nuclei and is known as the effective 

potential energy, or potential energy 3N-6 (3N-5 for linear molecules) dimension 

surface, that determines the motion of the nuclei. 

 

2.3. THE GRADIENT AND THE HESSIAN AS TOOLS FOR THE LOCATION OF 

MINIMA AND TRANSITION STATES5 

 

As was shown in equation 2.10, the energy of a system can be expressed as a function 

of the nuclear coordinates, giving rise to the concept of potential energy surface. Much 

of the chemistry involving potential energy surfaces concerns the determination of 
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minima and first-order saddle points (transition states) through optimization procedures 

and the evaluation of the gradient and the Hessian. The gradient (2.12) is defined as the 

vector formed by the first derivatives of the potential energy surface with respect to the 

different nuclear coordinates. 

(2.12) 

            

In a similar way, the Hessian (2.13) can be defined as the matrix constructed with the 

second derivatives of the potential energy surface with respect to all the possible pairs 

of nuclear coordinates Ri and Rj. 

 

 

            (2.13) 

 

The condition of stationary point is fulfilled when the length of the gradient vector is 

zero. To evaluate the stationary point, the Hessian matrix must be diagonalized: 

- All eigenvalues are positive: Local minimum 

- All eigenvalues are negative: Local maximum 

- n negative eigenvalues: nth order saddle point. A first order saddle point is a 

particular case and represents a transition state (a minimum with respect to all 

the nuclear coordinates except for one of them, along which a maximum is 

found). 

Locating transition states is particularly interesting because of the chemical information 

about reaction mechanisms they bring and because of the fact that, as unstable species 

by nature, their experimental determination entrails inherent difficulties. 

From the mathematical point of view, locating transition states is much more 

complicated task than finding minima. In order to reach the saddle-point one should 

start from a sufficiently close geometry. The use of internal coordinates tends to be 
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helpful because automatically removes the translational and rotational degrees of 

freedom, and makes also possible to associate the reaction path to one coordinate. 

The most commonly employed method is a variation of the Newton-Raphson approach,  

which, in an iterative procedure, allows to find stationary states of the potential energy 

surface by solving the system of equations that arises from minimizing the gradient. A 

starting point with the proper curvature is desirable, and it might be necessary to 

compute the Hessian at each point during the optimization. Eigenvector following 

techniques6 are less sensitive to the curvature at the starting point, they allow to follow a 

particular mode associated to the reaction path and can lead to transition states even 

starting from a wrong geometry. 

As it is usually crucial to start from a good initial geometry, there are techniques to 

obtain reasonable starting approximations to the geometry of the transition state. The 

Linear Synchronous Transit or LST7 is based on the knowledge of the geometries of 

reactants and products and assumes that the path connecting them is linear as an 

approximation. The Quadratic Synchronous Transit, in a similar fashion, approximates 

the reaction path through a parabola. 

Different methods employ a LST/QST algorithm to find a starting point, and then the 

transition state is located by a Newton-Raphson based or an eigenvector method8. 

 

2.4. THE POLYELECTRONIC PROBLEM 

 

To evaluate the U(RA) function for a given set of fixed nuclear coordinates, the 

electronic problem must be solved by operating the electronic Hamiltonian on its 

eigenfunctions. For monoelectronic atomic systems, the electronic Hamiltonian is 

           (2.14) 

And the corresponding eigenfunctions can be exactly determined from equation 2.8. 

The eigenfunctions obtained from the resolution of a monoelectronic eigenvalues 

equation corresponding to an atomic system are also called hydrogenoid orbitals, and 
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can be expressed in a general way as the product of a radial function and a spherical 

harmonic. 

          (2.15) 

In the case of polyelectronic systems, in addition to the electronic kinetic  and the 

electron-nucleus  attraction terms, the interelectronic repulsion  term also has to 

be taken in account. The electronic Hamiltonian  can be then expressed as a sum of a 

monoelectronic operator which contains the  and VNe terms, and a bielectronic 

operator which accounts for the interelectronic repulsion. 

 

             (2.16) 

As long as we are concerned with molecular systems, the eigenfunctions of the 

polyelectronic Hamiltonian will be molecular orbitals. Interelectronic repulsion term in 

equation 2.16 does not allow the electronic Hamiltonian of a polyelectronic system to 

be constructed as a finite summatory of monoelectronic terms (that is, only depending 

on the coordinates of one electron), that is the reason why the exact eigenfunctions 

cannot be obtained in an easy way from the motioned expression. 

Defining a spin orbital (x) as a monoelectronic wave function whose form depends of 

the position and spin coordinates of an electron (where x stands for both the coordinates 

of position r and of spin ), the existence of a complete orthonormal set of an infinite 

number of spin orbitals can be assumed so that any arbitrary function could be exactly 

expanded as a linear combination of those spin orbitals, as shown in equation 2.17. 

 

              (2.17) 

Since in practice it is not possible to work with an infinite number of functions, a 

truncated set of spin orbitals, which would constitute a complete basis set on a 

determinate subspace, is usually considered as a reasonable approximation to the wave 

function. 
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2.5. THE ANTISYMMETRY PRINCIPLE, THE HARTREE PRODUCT AND THE 

SLATER DETERMINANT 

 

The antisymmetry or Pauli exclusion principle states that a many-electron wave function 

must be antisymmetric with respect to the interchange of the coordinate x (both space 

and spin) of any two electrons. From the antisymmetry principle is immediately derived 

the fact that no more than one electron can occupy a spin orbital. 

      (2.18) 

Supposing a system in which it is possible to write the exact electronic Hamiltonian in 

terms of a summatory of one-electron hamiltonians, a possible eigenfunction would be a 

simple product of spin orbital wave functions describing each electron separately. 

       (2.19) 

Such a wave function is called Hartree product, which is an uncorrelated electronic 

wave function (since the supposed Hamiltonian has no interelectronic repulsion term) 

and neither takes account of the indistinguishability of electrons nor accomplishes the 

antisymmetry principle. 

To overcome those problems -although not completely- Slater Determinants 

(normalized and antisymmetrized summatories of Hartree products, all of them 

composed of the same set of spin orbitals, in which the electron coordinates are 

permuted in all the possible combinations among the spin orbitals) are extensively used. 

A short-hand notation for Slater Determinants is shown in expression 2.20. 

         (2.20) 

A Slater Determinant incorporates exchange correlation, which means that the motion 

of two electrons with parallel spin is correlated. However, the motion of electrons of 

opposite spin remains uncorrelated, so that there is a finite possibility of finding two 

electrons with opposite spins at the same point of space simultaneously. 

Physically, a Slater Determinant represents a specific electronic state in an electronic 

system, and a linear combination of different Slater Determinants could be able to 
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represent a system in which different electronic states are considered, although an exact 

solution for those polyelectronic systems would nevertheless involve an infinite number 

of spin orbitals, as long as an infinite number of Slater Determinants (eq. 2.21 –see also 

Figure 2.1-). 

 

           (2.21) 

 

2.6. THE HARTREE-FOCK METHOD 

 

The Hartree-Fock method is a single-referent method that uses a wave function 

composed of only one Slater Determinant to solve the eigenvalues problem for an exact 

polyelectronic Hamiltonian. Since for polyelectronic systems the exact wave function is 

not known, also makes use of a truncated set of spin orbitals. The variational principle 

states that the nth eigenvalue of an operator applied on a truncated (incomplete) basis 

set of functions is always larger in value than the nth eigenvalue of the same operator 

applied on the exact function (or a complete set of functions), thus the wave function 

that can represent an electronic system in a better way will be the one that gives a set of 

eigenvalues as low as possible, minimizing equation 2.22. 

           (2.22) 

The intermediate steps to obtain the result will not be detailed here, as they are 

extensively explained in other sources2,3,9, but the spin orbitals obtained from 

minimizing the value of E0 are the eigenfunctions of a monoelectronic operator know as 

the Fock operator . 

           (2.23) 

 is a monoelectronic operator already defined in 2.16, and  is an effective 

interelectronic repulsion monoelectronic operator. 

                 (2.24) 
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 and  are the coulomb and exchange operators respectively, and through they are 

formally monoelectronic operators, their expected values are the bielectronic integrals 

shown in equations 2.25 and 2.26 (they are also shown in Dirac’s notation). 

 

             (2.25) 

 

             (2.26) 

The coulomb integral 2.25 represents classical coulombic repulsion between electrons 

described by spin orbitals i and j, the exchange integral 2.26 arises from the 

antisymmetrized nature of the Slater determinant and does not have a simple classical 

interpretation. 

Obtaining the eigenvalues of the Fock operator  is an iterative process since the 

 operator depends on the eigenfunctions. That iterative procedure is called the self-

consistent-field (SCF) method. The Hartree-Fock equation 2.27 

           (2.27) 

must be solved by introducing an initial guess to the eigenfunctions of , that can be 

the eigenfunctions of the  operator, from which a first guess of  can be 

calculated, and then use it to calculate a new set of eigenfunctions of . When the 

difference obtained (for example of the E0 or the  values) between two consecutive 

cycles is smaller than a previously defined cut-off for the error, the best guess for the 

eigenvalues of the Fock operator is obtained. 
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2.6.1. THE HARTREE-FOCK LIMIT AND THE CORRELATION ENERGY 

 

Larger basis sets will give lower energy values until the so known as Hartree-Fock limit 

is reached (with an infinite basis set). That energy is the best approach to the exact 

energy that can be obtained from the Hartree-Fock method. The difference between the 

Hartree-Fock limit and the exact energy is the correlation energy, which has a negative 

value since the exact energy is always smaller (larger in absolute value) than the 

Hartree-Fock energy. 

          (2.28) 

This correlation energy arises directly from the fact that the Hartree-Fock method, 

although including correlation between electrons of the same spin coordinate (which is 

known as Fermi hole), does not include correlation between electrons of different spins 

(which is known as Coulomb hole). The total energy obtained for a polyelectronic 

system can still be improved through wave function based methods by multi-

configurational procedures that introduce the wave functionas as the expansion of more 

than one Slater Determinant (eq. 2.21 shows an expression for a Full-CI expansion, 

which contains an infinite number of determinants), and are called Post Hartree-Fock 

methods (Configuration Interaction, Coupled Cluster, Perturbation Theory and Møller-

Plesset partition) if they include the correlation energy after a set of spin orbitals has 

been optimized, and the Multi-Configurational methods (MCSCF, CASSCF, MRCI, 

CASPT2…) which allow to optimize variationally at the same time the set of spin 

orbitals and the set of electronic configurations. However, those methods will not be 

introduced in this work. For further references to Post Hartree-Fock and Multi-

Configurational methods see the literature,5,10,11,12. 
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2.7. THE DENSITY FUNCTIONAL THEORY5,9 

 

While the Hartree-Fock method is a wave function-based method, we will introduce 

now the Density Functional Theory, an electronic density-based method generally more 

computationally efficient than wave function-based methods. Although its predecessor 

can be found in the Thomas-Fermi model13,14, DFT formalism arose from the 

Hohenberg-Kohn theorems15 and was explicitly developed by Walter Kohn and Lu Jeu 

Sham with the Kohn-Sham method16. 

The electron density  is defined as the number of electrons within the volume 

defined by  and  in a given state. It can be calculated from the wave function 

of the system with equation 2.27. 

 

         (2.29) 

And it integrates over all the space to give the total number of electrons N. 

          (2.30) 

 

Figure 2.1 Dependence of calculations on size of 
one-electron and N-electron basis sets. 
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2.7.1. THE FIRST HOHENBERG-KOHN THEOREM 

 

The first Hohenberg-Kohn Theorem legitimizes the use of the electron density  as a 

basic variable instead of the wave function to determine a polyelectronic system. It 

states: The external potential  is determined, within a trivial additive constant, by 

the electron density . It can be seen from the general expression of the Hamiltonian 

of a polyelectronic system (2.16) that the external potential  completely determines 

its form.  also determines the number of electrons, so the system in its ground state 

is completely determined by . Another way to state the first Hohenberg-Kohn 

Theorem is: Any observable of a stationary non-degenerate ground state can be 

calculated, exactly in theory, from the electron density of the ground state. In other 

words, any observable can be written as a functional of the electron density of the 

ground state. Thus the energy can be expressed as a functional of the density: 

        (2.31) 

Where  and  are universal functionals, the kinetic energy density functional 

and the interelectronic repulsion density functional respectively, usually encompassed 

within the Hohenberg-Kohn functional . Within this consideration the eq. 2.31 

can be rewritten as: 

 

         (2.32) 

There is a direct relation between the density and the wave function through the external 

potential: 

           (2.33) 

That implies that  must be N-representable (i.e. must be a positive function defined 

in the entire space and its integral must be equal to the total number of electrons) and v-

representable (i.e. there is an external potential from which  can be derived). 
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2.7.2. THE SECOND HOHENBERG-KOHN THEOREM 

 

The second theorem of Hohenberg-Khon provides de energy variational principle and 

states that: The electron density of a non-degenerate ground state can be calculated, 

exactly in theory, determining the density that minimizes the energy of the ground state 

(eq. 2.34). This principle assures that any trial density  results in an energy greater or 

equal to the exact energy of the ground state. 

 

            (2.34) 

 

2.7.3. THE LEVY’S CONSTRAINED-SEARCH FORMULATION 

 

In the Hohenberg-Khon formulation, the one-to-one map cannot be directly established 

between  and , given that when passing through an identical potential (e.g. in a 

degenerate ground state), the connection is lost. Levy’s constrained-search 

formulation17 allows a one-to-one map between  and  without passing through  

(i.e. p(r) is not required to be v-representable), and the formulation can also be applied 

to degenerate ground states since they are described by different wave functions. Given 

a set of functions  that integrate to , the exact density for a given ground state, it 

is demonstrated by the variational principle that, 

 

           (2.35) 

 

The  is the one that minimizes the expected value of . 
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In principle, excited states of a given symmetry and/or spin can be studied restricting 

the set of functions used in the variational procedure to suitable symmetry and spin 

multiplicity functions, using the same arguments as in the Levy’s constrained-search 

formulation, however it is demonstrated18 that for a given excited state there might exist 

more than one external potential which yields the electron density of that state, and 

consequently the energy of the excited state would not be a functional of the density. 

To assure the N-representability while applying the variational procedure to a problem, 

a restriction is introduced via undetermined Lagrange multipliers, 

 

               (2.36) 

The Lagrange multiplier  has the meaning of a chemical potential. From equation 2.36, 

equation 2.37 can be obtained and is known as the fundamental equation of density 

functional theory. 

 

         (2.37) 

Equation 2.37 is easily obtained from combining equations 2.32 and 2.36. 

 

2.7.4. THE KOHN-SHAM METHOD 

 

The main problem in solving equation 2.37 is that the exact expression relating  

with the density is unknown. The Kohn-Sham method19 proposes a way to overcome 

this problem using a reference system of non-interacting N electrons that move under 

the same external potential  as the real system, as an initial guess (in a similar way 

to the Hartree-Fock method). The Hamiltonian of such a system only contains single-

electron terms: 

           (2.38) 
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For Hamiltonian in 2.38 the exact wave function can be calculated, and subsequently 

the exact density and kinetic energy can also be exactly calculated through 2.39 and 

2.40 respectively. 

 

         (2.39) 

  (2.40) 

                

For the reference system, the energy can thus be expressed starting from equation 2.31 

and obtaining a similar expression than that of equation 2.32: 

            (2.41) 

 

The subscript s indicates that we are considering the reference system. In the real 

system, in which the N electrons interact, the energy can be expressed as: 

   

 (2.42) 

 

If a partition is done in the expression of the energy between the reference system terms 

and the real system terms, the energy of the real system can be expressed: 

 

             (2.43) 

 is the Coulomb repulsion energy, the term  is known as the 

correlation kinetic energy, and the term  is the exchange-

correlation energy of the electronic part. These two contributions are usually grouped in 
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one single term, , called total exchange-correlation energy, which contains all the 

contributions to the energy for which we do not have a simple expression as a function 

of the electron density. The resulting energy equation is: 

 

(2.44) 

Applying 2.44 to 2.37, and in an iterative process (resembling that of the SCF), from the 

initial guess of spin orbitals obtained from the resolution of the eigenvalues equation of 

the Hamiltonian of the reference system (see eq. 2.38) an initial guess for the electron 

density can be obtained directly from equation 2.35; and from electron density the 

 can be obtained from equation 2.45, which arises from derivating with respect 

to  all the contributions to the potential energy present in eq. 2.44 (that is, all the 

terms except the un-correlated kinetic energy functional ). 

         

(2.45) 

Making use of equation 2.45, the Kohn-Sham monoelectronic Hamiltonian can be 

written for the real system: 

 

             (2.46) 

And from the corresponding eigenvalues equation (2.47) the Kohn-Sham orbitals can be 

obtained. 

            (2.47) 

The orbitals that appear in equation 2.47 are the Kohn-Sham orbitals and, though they 

do not have strict physical meaning, they can be used for reactivity studies, given that 

their shape, symmetry and energetic order has been proved to coincide with those of the 

Hartree-Fock calculations16. 
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2.7.5. APPROXIMATIONS TO THE EXCHANGE-CORRELATION POTENTIAL 

 

Since an exact expression to  in eq. 2.44 is not known, good approximations are 

needed to put DFT into practice. Different ways of doing that are described hereafter, 

from simplest LDA to the more complex hybrid functionals. 

 

2.7.5.1. THE LOCAL DENSITY APPROXIMATION (LDA) 

 

The Local Density Approximation, or LDA, supposes that exchange and correlation 

energy depend only on the local density (i.e. the density in an infinitesimal volume). 

The function  is introduced as the exchange and correlation energy per particle, 

which depends exclusively on a constant density ; while  can be expressed as: 

                (2.48) 

 

 can be separated into exchange and correlation contributions: 

         (2.49) 

The exchange part can be expressed20 as 

 

      (2.50)        

 

where  is an adjustable parameter21. 

For the correlation energy different approaches exist22,23,24 but it is difficult to obtain 

separately from the exchange energy. This is normally achieved by using a suitable 

interpolation formula, starting from a set of values calculated for a number of different 

densities in an homogeneous electron gas25. 
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2.7.5.2. THE LOCAL SPIN DENSITY APPROXIMATION (LSDA) 

 

In open-shell systems, since the densities of  and  electrons are different, they must be 

treated separately. In the same way as in LDA, exchange correlation energy can be 

separated into two contributions: 

        (2.51) 

Exchange only depends on  density because there is not exchange contribution 

between electrons of different spin coordinate. Both contributions can be treated in a 

similar way as are in LDA. 

LDA functionals yield good geometries, good vibrational frequencies and reasonable 

charge densities, except in the regions close to the nuclei; but have a general tendency to 

exaggerate the strength of the bonds and are not suitable for systems with weak bonds. 

 

2.7.5.3. GENERALIZED GRADIENT APPROXIMATIONS (GGA) 

 

GGA introduces density gradients into the description of exchange and correlation 

effects, taking into account not only the value of the density in each point but also its 

variation . 

(2.52) 

Becke’s non-local correction to the exchange26 adds a non-local term to the LDA 

expression: 

       (2.53) 

With, 

 

(2.54) 
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Where  is a parametrized function of the density and its gradient which gives a 

correct asymptotic behaviour of the exchange energy per particle. Many other non-local 

corrections are used, but the most often used are perhaps the Becke’s26 correction to the 

exchange and those of Perdrew27 and Lee, Yang and Parr28 to the correlation. Those 

functionals still fail to describe van der Waals complexes. 

 

2.7.5.4. META-GGA FUNCTIONALS 

 

In meta-GGA functionals, the exchange and correlation energy functional contains not 

only the density and its gradient, but also the kinetic energy density , which 

depends on the occupied kohn-sham orbitals, and/or the Laplacian of the density 29. 

 

(2.55) 

The presence of second derivatives requires a larger computational effort. Examples of 

meta-GGA functionals include B9530, KCIS31, TPSS32 and VSXC33. 

 

2.7.5.5. HYBRID METHODS 

 

Hybrid density functional (H-GGA) methods combine the exchange-correlation of a 

conventional GGA method with a percentage of Hartree-Fock (or exact) exchange. 

 

(2.56) 

Expression 2.56 makes up the so-called adiabatic connection, in which a value  

represents Hartree-Fock exchange, and for  the exchange energy is approximated 

by a LSDA or GGA functional. 
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The exact amount of Hartree-Fock exchange cannot be assigned from first-principles 

and therefore is fitted semi-empirically. Hybrid functionals allow a significant 

improvement over GGAs for many molecular properties and they have become widely 

used25 (although in solid-state physics this type of functional is much less successful 

due to difficulties on computing the exact-exchange part within a plane-wave basis set). 

Examples of hybrid functionals include B3LYP26,28,30, B3P8626,27,30, B3PW9126,30,34, etc. 

The B3LYP functional, whose expression is shown in equation 2.57,  

    (2.57) 

shows a local LSDA correction to exchange , a parametrized amount of exact 

exchange , a B88 non-local correction to exchange , a 

local VWN correction to correlation  and a non-local LYP correction to 

correlation . This functional is one of the most widely used in 

DFT calculations, with an estimated use of about the 80% over all the other 

functionals25. 

The hybrid meta-GGA functionals combine meta-GGA functionals with Hartree-Fock 

exchange, and represent a new class of density functionals nowadays under active 

development. 

 

2.8. ATOMIC BASIS SETS5 

 

Within LCAO formulation, to describe mathematically spin orbitals, the definition of a 

set of functions to expand their spatial part is required, according to eq. 2.58. 

           (2.58) 

 is the spatial part of the ith spin orbital,  are the coefficients of the lineal 

expansion and are a set of atomic basis functions, or atomic basis set. Slater-type 

orbitals (STO) (2.59) are simpler than hydrogen-like orbitals, but describe well the zone 

of the nucleus. However, the calculation of tri- and tetracentric integrals is not 

analytical. 
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        (2.59) 

An alternative to STO are Gaussian-type orbitals (GTO), which can be expressed as in 

eq. 2.60. All the integrals arising from those orbitals can be calculated analytically, in 

spite that GTO do not behave as well as STO near the nucleus. 

         (2.60) 

Pople and co-workers developed STO-NG basis sets to combine the advantages of the 

two types of functions. STO-NG are Slater-type orbitals constructed as a least squares 

fitting of an expansion of N Gaussian functions (eq. 2.61). The most widely used of 

such expansions is STO-3G. These types of expansions are usually called contracted 

Gaussian functions, and the Gaussian functions used on the contraction are called 

primitive Gaussian functions. 

           (2.61) 

The minimal basis set, namely the one that contains only the basis functions necessary 

to describe the occupied orbitals of a system on its ground state, is for most of the cases 

not flexible enough. Some ways of increasing the flexibility of the basis set are doubling 

the number of orbitals, which leads to the Double Z basis sets; or the more economical 

split-valence basis sets, which split only the valence orbitals and were proposed also by 

Pople and co-workers. An example of a split-valence basis set is 3-21G, where each 

inner electron is described by one STO built from three primitive Gaussian functions, 

and each valence electron is described by two STO, one of which is built from two 

primitive Gaussian functions and the other one is built from only one primitive 

Gaussian function. 

To include polarization effects on electrons, polarization functions are added to the 

basis set. These functions have a higher angular momentum than the occupied valence 

orbitals of the atom. Polarization functions would be of p type for a hydrogen atom, but 

of d type for an element of the second row, with p functions in its valence shell. The 

inclusion of polarization functions is represented with a * sign or alternatively with a 

(d). 

To describe electrons located far from the nucleus, for example valence electrons of 

anions, diffuse functions are added to the basis set. Those functions have very small 
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exponents, allowing the probability of finding electrons far from the nucleus increase 

just by increasing the contribution of the diffuse functions. 
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3. REVIEW OF THE LITERATURE ON METALLOCENES AND SULFUR 
HEXAFLUORIDE 

 

The chemical reaction of vanadocene [bis(cyclopentadienyl)vanadium, V(C5H5)2] with 

the SF6 gas has been proven experimentally by Ernst et al1 to yield its mono-fluorinated 

derivative, the previously unreported paramagnetic 16-electron 

(fluoro)bis(cyclopentadienyl) vanadium, V(C5H5)2F. They obtained V(C5H5)2F 

dissolving sublimed V(C5H5)2 in toluene, and then bubbling SF6 through the solution at 

ambient temperature. The solution gradually lightened its color to a pale purple. When 

filtered, concentrated and recrystallized, blue plates were obtained with a yield of the 

58%. 

This section will introduce the molecules intervening on the reaction of study, namely 

the vanadocene complexes and the sulfur fluorides. Vanadocenes can be understood in 

the more general frame of the metallocene complexes. A brief glimpse to the many uses 

of those compounds will be presented, as well as an explanation of some of their 

properties through the molecular orbital theory. An analogous introduction to sulfur 

hexafluoride and its derivatives will follow. 

 

3.1. METALLOCENES: TYPES AND USES 

 

The metallocene chemistry raised as an active field of chemistry after the discovery of 

ferrocene in 1951, whose structural and bond properties35 earned a Nobel prize to 

Fischer and Wilkinson and established the study of metal-carbon bonds as an 

independent discipline known today as organometallic chemistry. Subsequently to that 

discovery followed the development of a metallocene chemistry for most of the d-

elements. Strictly speaking, metallocenes are “sandwich” compounds involving two 

cyclopentadienyl (Cp) rings and a metallic center, and are expressed by the formula 

[M( 5C5H5)2]. The name of metallocene is nowadays also applied to other related 

compounds (Fig. 3.1). Examples include bent metallocenes, which contain further 

ligands attached to the metallic center; ansa-metallocenes, with a bridge between the 

two Cp rings; metallocenes in which one or more hydrogens of the Cp rings have been 
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substituted by other species; “half 

sandwich” metallocenes, or 

cyclopentadienyl complexes, with 

one of the Cp rings substituted by a 

different ligand; “multidecker 

sandwiches”, or 

multicyclopentadienyl complexes; 

and several more possible structures 

involving metallic complexes with 

one or more Cp rings as ligands, 

such as ions or polymers. 

 

Metallocene compounds have a wide and important applicability in industry as 

catalysts. Bis(cyclopentadienyl)group IV metal complexes, mainly zirconocene 

complexes, have been found to act as catalysts on Ziegler-Natta homogeneous 

polymerization of alquenes36 to synthesize polymers which cannot be produced by 

conventional Ziegler-Natta catalysts. Ansa-metallocenes have found extensive use as 

catalysts that effect enantioselective bond-forming processes37, due to their 

geometrically constrained structure38. In antisymmetric homogeneous catalysis, 

ferrocenyl ligands (ferrocene complexes with one or more substituents in the Cp rings) 

represent an important class of auxiliaries that find application in processes such as Rh-

catalyzed hydrogenation in the synthesis of biotin39 or Ir-catalyzed ketimine 

hydrogenation to generate the herbicide (S)-metolachlor40. 

Metallocenes have been of proved interest in other fields also. Bent metallocene 

complexes with two halides containing Ti, V, Nb or Mo as central atoms have been 

reported to have strong antitumor properties41, particularly cytostatic activity of 

titanocene complexes is known since 197942. Vanadocene(IV) complexes of general 

formula Cp2VX2 (X=halide, pseudohalide) have also been found to have spermicidal 

properties43. TCNE- and TCNQ- VCp2 complexes have been studied by Choukroun et 

al.44 among others due to its potential use as molecular magnet building blocks. 

Metallocene-based polymers, known shortly after the discovery of ferrocene45, such as 

organic polymers with metallocene side groups, poly(metallocenes) or even dendritic 

 

Fig. 3.1 Some general structures for metallocenes. a) metallocene 
with parallel Cp rings, b) bent metallocene with ligands, c) ansa-
metallocene, d) Cp substituted metallocene, e) half-sandwich and f) 
multidecker sandwich. 
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poly(metallocenes) are also being studied, as well as the synthetic ways that lead to their 

obtention. 

In addition to these uses, many other applications for metallocenes and metallocene 

derivatives are known, and represent actual subjects of research46-51. 

 

3.2. ORBITAL ANALYSIS ON METALLOCENES 

 

The structure and chemistry of the first transition metal series varies widely and is 

dominated by the number of valence electrons each compound possesses45. Ferrocene 

has a stable 18-electron configuration, but the reactivity of the metallic center increases 

when the number of valence electrons changes. E.g. Vanadocene is a 15 electron 

structure with three unpaired electrons, very air sensitive in solution and in solid state, 

highly reactive and acting like a carbene in some respects. Chromocene is unstable and 

air sensitive. Manganocene has significant ionic character and is quite reactive to 

atmospheric oxygen, yielding ferrocene when it reacts with FeCl2 in THF. Cobaltocene 

is a powerful reducing agent that undergoes electrophilic substitution reactions to form 

cobaltocenium salts or substituted cyclopentadiene complexes. Nickelocene is also 

easily oxidized and its reactivity reflects the tendency to achieve 18-electron 

configuration. From experimental facts and theoretical studies it seems clear that 

reactivity for ferrocene is the lower one and it increases changing the coordination metal 

atom. 

A proper way to understand the structures and reactivities of the [M( 5C5H5)2] 

metallocenes (shortened to MCp2 from now on) is by analyzing the energy and 

symmetry of their molecular orbitals and their electronic structure. From a molecular 

orbital analysis comes out that MCp2 complexes are better understood as an octahedron 

rather than a two coordinate or ten coordinate complex, because Cp- ligands have six -

electrons and utilize three coordination sites54. In Fig. 3.2 it can be seen that the frontier 

molecular orbitals correspond to an almost triply degenerate set of a1g and e2g 

symmetry, mainly formed by the xy, x2
-y

2, and z2 d orbitals of the metal. Above them 

two degenerate e*1g orbitals arising from the anti-bonding overlap of the xz and yz d 

orbitals of the metal and the Cp rings molecular orbitals of the same symmetry are 
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located. A very similar splitting can be observed in a typical octahedral complex, with a 

degenerate set of three non-bonding metal d-orbitals with t2g symmetry and two anti-

bonding 2eg orbitals. 

 

In the case of ferrocene, the three frontier orbitals are doubly occupied, while in the case 

of vanadocene, there would be three available electrons to fill the a1g and the two e2g 

frontier orbitals, giving rise to different possible multiplicities (a quartet and a doublet). 

In general, in the MCp2 metallocenes in which two states with different multiplicities 

are possible, the lower energy state is that of maximum multiplicity. This trend is 

expected to be greater for the first transition metals than for the second transition 

metals, because of their stronger exchange interactions and smaller ligand field 

splittings55. 

The variation of the relative angle of rotation between the two Cp rings alters the 

symmetry of the metallocene. Thus, an eclipsed position corresponds to a D5h 

symmetry, while a staggered position of the rings results in a D5d symmetry. Although 

at low temperatures the relative orientation of the rings is closer to eclipsed, and D5h is 

Fig. 3.2 Molecular orbital diagram for 
metallocene as a combination of two 
parallel cycloplentadienyl rings and a 
transition metal. The molecular orbitals 
inside the dotted box indicate the frontier 
orbitals (those occupied by the d electrons 
of the metal)54. 
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usually a genuine minimum56, the energy barrier of ring rotation is estimated55 to be of 

about 1-2 kcal mol-1. Although symmetry labels of the molecular orbitals change 

depending on the consideration of D5h or D5d symmetry, the essential details about 

structure and bonding are the same. 

To accept a ligand the metallocene first bends and its frontier orbitals split as shown in 

Fig. 3.3. The a1g orbital transforms into the 2a1 orbital, mainly of  character but with 

a small contribution of the s and  orbitals. The e2g orbitals split, yielding a 1a1 

orbital, mainly formed by the  orbital (with a small contribution of the  

orbital) and a b2 orbital of dxy character. 2a1 orbital increases its energy when bending, 

partly due to the avoided crossing with the 1a1 orbital, and partly because of an increase 

in overlap with the  Cp orbitals. The 1a1 orbital remains basically of the same energy 

due to the avoided crossing with 2a1. The b2 orbital rises in energy because it loses some 

overlap with the * Cp orbitals. Since the frontier orbitals, with the exception of the 1a1 

orbital, increase their energy when the two Cp rings bent back, it is expected that the 

degree of bending decreases when adding d electrons, thus increasing the relative 

stability of the parallel disposition. As well, high spin species are expected to have a 

greater trend towards a geometry with parallel Cp rings than low spin species. 

 

The number of frontier orbitals involved in the bonding with additional ligands depends 

on the number of ligands and the number of empty orbitals in the metal, as shown in 

Fig. 3.4. There are no structurally characterized examples of metallocene molecules 

Fig. 3.3 Diagram representing the 
qualitative change in energy of the frontier 
molecular orbitals as the Cp rings bend 
back. The 2a1, b2 and 1a1 orbitals are 
schematically represented, as seen from 
the z-axis perspective. They have a proper 
symmetry to accept as far as three 
additional ligands3. 
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bound to three monodentate ligands other than hydrogen55. Cases in which three ligands 

are bound to the metallocene will not be considered in this work. 

 

When the ligands have -donor character (such as the case of halogens), their p orbitals 

can interact with the empty  molecular orbitals of the metallocene. A metallocene 

fragment readily provides only one acceptor  orbital, the b2 orbital shown in Figures 

3.3 and 3.4, as long as it is empty. The dyz orbital of the metal is involved in bonding to 

the Cp rings in the b1 orbital, but its anti-bonding counterpart descends in energy on 

bending; although lies some 1.5 eV above the 2a1 orbital55 it could be considered as a 

fourth frontier orbital. Strong -donors could effectively interact with the b1* orbital 

weakening the bond of the metal with the Cp rings. 

 

3.3. STRUCTURAL PARAMETERS OF METALLOCENES 

 

Some useful structural parameters are usually defined to determine metallocene 

geometries55. These are depicted in Fig. 3.5. In this work, though, the main geometric 

parameters that will be used will be angles  and , as well as carbon-metal distances. 

 

Fig. 3.4 Molecular orbital schemes for binding a bent metallocene unit to the s orbitals of one and two monodentate 
ligands, whose lineal combination results in two molecular orbitals of a1 and b2 symmetry. The 2a1, b2 and 1a1 orbitals 
of the metallocene are the frontier orbitals. 
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3.4. USES AND RISKS OF THE SF6
57 

 

Sulfur hexafluoride is a colorless, odorless, tasteless and incombustible gas at normal 

conditions, widely used also in a variety of industrial processes, commercial products 

and scientific fields. However, SF6 is one of the most potent greenhouse gases, with an 

estimated lifetime of 3,200 years in the atmosphere and a global warming potential of 

22,450, and has been blanketed into the Kyoto protocol58. 

Due to its high dielectric strength and low toxicity, SF6 is being used as an insulating 

gas in electronic and electrical equipment; as well as an etching gas, a blanketing gas for 

protecting molten aluminum or magnesium, and also as a tracer gas in ventilation 

efficiency. Sulfur hexafluoride is also used as an insulating gas in double pane sound-

insulating windows, tires and soles of sport shoes; in retinal detachment repair 

operations, as a contract agent for ultrasound imaging and in several additional 

applications. 

It has been noted although that, in spite of its inertness and of not representing a 

significant threat to human health, SF6 can break down in a wide variety of species by 

electrical and thermal decomposition in the presence of other molecules, and its 

decomposition products are generally toxic. Two of the most toxic ones are SF4 and 

S2F10, with occupational exposure limits of 0.1 and 0.01 ppm respectively59-61. 

SF4, or sulfur tetrafluoride, is a nonflammable and colorless gas with an irritating odor, 

readily hydrolyzed by moisture forming hydrofluoric acid and thionyl fluoride. S2F10, 

disulfur decafluoride, is the dymer of the radical specie SF5, sulfur pentafluoride, and is 

Fig. 3.5 : Angle between the ring 
planes, : Angle between the normals 
from the metal to the ring planes, : 
ring ceontroid-metal –ring centroid 
angle, : Angle between the metal ring 
and the metal-ring centroid vector, d: 
Displacement of the ring centroid from 
the normal to the ring plane, : Angle 
of rotation of the two rings (carbon-ring 
centroid-ring centroid-carbon dihedral 
angle). 
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a colorless volatile and insoluble in water liquid. It is hydrolyzed by water and alkalis, 

and at high temperatures disproportionates into SF6 and SF4. 

In spite of its appreciated inertness and that it was not considered an established reagent, 

Ernst et al.62,63 report that “with low valent organometallic compounds, SF6 can not only 

be quite reactive at and even below room temperature, serving as a useful and selective 

fluorinating agent, but also quite surprisingly, its reactivities can rival or exceed those of 

some commonly employed fluorinating agents”. 

 

3.5. AN ALTERNATING DISSOCIATION ENERGY PATTERN64 

 

SFn (n = 1-6) species bond dissociation energies do not follow a regular pattern. As 

outlined in Fig. 3.6, bond dissociation energies of neutral closed shell species that yield 

neutral species with unpaired electrons are larger than bond dissociation energies of 

neutral species with unpaired electrons that yield neutral closed shell species. For 

instance, the energy required to separate one fluorine atom from SF6 is of 101.0 kcal 

mol-1; while the energy required to separate a fluorine atom from the radical specie SF5 

is less than a half: 43.3 kcal mol-1. The dissociation of one fluorine atom from SF4 

involves 96.3 kcal mol-1, which is only slightly lower than the bond dissociation energy 

of SF6. This can be understood by recognizing that molecular species with fully-filled 8 

(SF2), 10 (SF4) and 12 (SF6) valence electron shells around the S atom are more stable 

than other species. SF6 has the largest bond dissociation energy so its S-F bond is the 

strongest one.  

 

 

 

 

 

Fig. 3.6. Alternating bond dissociation experimental energies64 for SFn species, 
expressed in kcal mol-1. 
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3.6. THE NATURE OF THE S-F BOND ON SF6 

 

The study of the geometry, the nature of the bonding, and the hypervalence in SF6 and 

in general in SFn species has been many times treated since Pauling introduced the 

concept of orbital hybridization in 193165. In regard to the octet theory of Lewis and 

Langmuir66, 67, hypervalent compounds of the second and higher row non-metals, such 

as SF6, require the postulate of an “expanded octet” and hybridization schemes 

involving d orbitals resulting in sp3d and sp3d2 hybrid orbitals. However, the large 

energy gap between the 3p and 3d orbitals stands against those hybridization models, 

and in general d orbital hybridization is not accepted as an explanation to hypervalence. 

Pauling proposed ionic resonance forms only involving s and p orbitals to overcome this 

problem, and several other models were proposed by other authors. 

The three center/four electron (3c/4e) model, illustrated in Fig. 3.6., was developed by 

Rundle and Pimentel68,69, and is the prevailing theoretical model for hypervalency. This 

model can be understood in terms of the interaction of three collinear atoms: a central 

atom (sulfur in the case of SF6) and two ligands (fluorine atoms for example). If one p 

orbital of the central atom combines with one p orbital of each one of the ligands, three 

molecular orbitals are obtained: an occupied bonding one, an occupied nonbonding one, 

with the electron density located over the ligand atoms, and an unoccupied anti-bonding 

one. 

 

Woon and Dunning70 have recently proposed a recoupled pair bonding model, which 

provides ready explanations for the oscillation of bond energies in the SFn series, and 

the presence of low-lying excited states in SF and SF2, as well as justifies the structures 

of the SFn species. The primary statement of recoupled pair bonding is that 

hypervalence arises from the decoupling of a pair of electrons, which can be recoupled 

with other electrons to form new chemical bonds.  

Fig. 3.6. Schematic representation of the 
3c/4e model for an interaction involving 
three p orbitals and four electrons. 
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Reed and Weinbold71 studied the role of the d orbitals in SF6 by ab initio methods. They 

pictured the electronic structure of SF6 with a “zeroth-order” picture as a starting point 

consisting of an ionic model (F- and S6+); a “first-order” picture, consisting of the 

transfer of about half an electron from the “p ” lone pair on each fluoride ion into the 

empty 3s and 3p orbitals of S6+; and a “second-order” picture, consisting of a charge 

transfer from the “p ” lone pairs of the fluorines into the sulfur “d ” orbitals of roughly 

0.16 electrons, and a charge transfer from the “p ” lone pairs of the fluorines into the 

sulfur “d ” orbitals of roughly 0.09 electrons. Although the hypervalence bond can be 

represented just by the “first-order” picture, which employs only valence s and p 

functions, and central atom d hybridization is completely irrelevant to the nature of the 

chemical bonding in SF6 due to a total 3d population of around 0.25 (being six times 

smaller than what would be necessary for a sp3d orbital hybridization with the 3d  

orbitals), the influence of d orbitals should not be neglected, and studies lead to the 

conclusion that their inclusion could result in a more refined picture. 

SFn geometries can be qualitatively rationalized making use of the VSEPR theory53. 
1SF4, with four ligands and one non-bonding electron pair over the sulfur, has a trigonal 

bipyramid structure with the non-bonding electron pair filling an equatorial position. 
2SF5 has five ligands and one free electron, and has a structure of square-based pyramid; 

and 1SF6 has an octahedric geometry. This qualitative prediction is in accordance with 

calculated64,72,73 and experimental74,75 structures. 

 

3.7. VANADOCENE FLUORINATION 

 

As has been stated, S-F bond is not so inert in the presence of certain metallic 

compounds. The fact that this bond is significantly weaker than the C-F bond and many 

Metal-F bonds suggested that appropriate metallic reactants should be able to subtract 

one or more fluorine atoms from the sulfur via the equivalent of an inner-sphere 

electron-transfer process. The SF6 reactions present one potential advantage: the 

products of the reaction are sulfur fluoride derivatives, which are more reactive than SF6 

and can react preferentially in successive fluorination reactions, ending up in a more 

efficient use of the available fluorine atoms and leading to sulfur rather than the highly 
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toxic SF5 and SF4 species. Furthermore, due to the inertness of SF6 in normal 

conditions, it is a safer reactant than other more reactive fluorinating agents. The 

reaction experimentally carried out by Ernst et al.1 could be roughly represented as in 

eq. 3.1: 

             (3.1) 

Starting from this point, more possibilities could be considered. It may be that two 

fluorine atoms could coordinate with the vanadocene instead of one, yielding VCp2F2 

and SF4; or, after a first fluorination, a second one could take place in a second step, 

involving the same fluorinating molecule or another one; or, after the first fluorination, 

a V-S bond formation could take place, with subsequent -elimination. 

In this work though, and starting from the reaction in eq. 3.1, only the following 

reactions are studied due to time limitations: 

            (3.2) 

           (3.3) 

In the next section a thermodynamic study of 3.2 and 3.3 will be done, and a kinetic 

study of 3.2. Although a kinetic study of 3.3 is not done for time reasons, future works 

should carry out with it.
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4. PROCEDURE AND RESULTS 

 

To represent the sets of molecular orbitals of the species involved, a 3-21G* basis set is 

used. This is a Pople’s split-valence D-Z basis set76-81 that describes each core electron 

with one atomic basis function (which is lineal combination of three Gaussian 

functions), and each valence electron with two atomic basis functions, one as a lineal 

combination of two Gaussian functions and the other constituted only by one Gaussian 

function. Moreover, 3-21G* basis set adds polarization functions but only to the second 

row elements. In our case then, only polarization functions to the sulfur atom will be 

added. 3-21G* is a small basis set that, in principle, allows to do qualitative predictions 

at a low computational cost. All the calculations have been performed with Gaussian03 

package82 using DFT method and a B3LYP hybrid functional26,28,30. 

 

4.1. GEOMETRY AND ENERGY FOR ISOLATED SPECIES 

 

As stated in the previous chapter, it is expected as 

much as a double fluorination of the vanadocene 

molecule, thus vanadocene, mono-fluorinated 

vanadocene and bi-fluorinated vanadocene must be 

considered. The possible fluorinating agents are the 

SF6 and the derivatives generated from the loss of 

fluorine atoms -namely, SF5, SF4, SF3, SF2, and SF. In 

this work we will restrict the study only to SF6, SF5 

and SF4 for time reasons in spite that for a more 

complete study SF3, SF2 and SF should also be 

considered. The total energies and the energy 

differences between the low spin and high spin states 

of all the species are listed in table 4.1. High spin 

states for SF6, SF5 and SF4 will not be considered 

because of the large energy difference values obtained between the high and low spin 

states. 

Table 4.1. Total energy values 
obtained for the vanadocene and SFn 
species at the B3LYP/3-21G* level and 
energy differences between the high 
and low spin states. (Energy values 
are in atomic units). 

 Total energy E 
4VCp2 -1324.488183 -39.8 
2VCp2 -1324.424696 0.0 
3VFCp2 -1423.849164 -9.7 
1VFCp2 -1423.833743 0.0 
4VF2Cp2 -1523.144961 28.3 
2VF2Cp2 -1523.190075 0.0 
3SF6 -991.855287 141.1 
1SF6 -992.080137 0.0 
4SF5 -892.568615 100.0 
2SF5 -892.727486 0.0 
3SF4 -793.338573 82.9 
1SF4 -793.470720 0.0 
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The minimum of the potential energy for each molecule is determined and confirmed 

with a frequencies calculation (results of frequencies calculations can be found in Table 

4.3). A comparison of the energy values obtained for 1SF6, 
2SF5 and 1SF4 with 

experimental and theoretical values from other works is shown in Table 4.2. The 

obtained values at the B3LYP/3-21G* level are in quiet good accordance with the 

theoretical values obtained in other works with more expensive methods, as well as with 

experimental values. Those values are also in accordance with the alternating bond 

dissociation energy trends of the SFn compounds. The dissociation energy to go from 
1SF6 to the radical compound 2SF5 (107.0 kcal mol-1) is more than two times the 

dissociation energy to go from 2SF5 to 1SF4 (46.8 kcal mol-1). The structural parameters, 

shown in Fig. 4.1, are in good accordance with the experimental values too. 

 

For vanadocenes, as it is shown in Table 4.1, the high spin species 4VCp2 and 3VFCp2 

have a lower energy than the low spin 2VCp2 and 1VFCp2 species. However, according 

to our calculations, the low spin 2VF2Cp2 is more stable than the high spin 4VF2Cp2, 

which at a first sight seems to go against the expected higher stability of the high spin 

complexes. This difference can be understood from the fact that, for the VF2Cp2 to 

acquire a quartet configuration, it is required that one electron fills an anti-bonding 

Table 4.2. Theoretical results for total energies and dissociation energies for 1SF6, 
2SF5 and 1SF4. 

  Total energya Bond dissociation energyb 

1SF6    

 Present work 

RCCSD(T)/AVQZc 

G2(MP2)d 

G3e 

Exp.f 

-992.080137 

 

-996.16457 

-996.79743 

107.0 

105.6 

106.9 

105.6 

101.0 ± 3.4 
2SF5    

 Present work 

RCCSD(T)/AVQZc 

G2/G2(MP2)d 

G3e 

Exp.g 

-892.727486 

 

-896.36530 

-896.94695 

46.8 

39.2 

38.1 

39.0 

43.4 ± 6.0 
1SF4    

 Present work 

RCCSD(T)/AVQZc 

G2/G2(MP2)d 

G3e 

-793.470720 

 

-796.67566 

-797.20226 

 

aIn atomic units. bSFn-1-F dissociation energies in kcal/mol. cRef. 70, dRef. 64, eRef. 
85. Dissociation energy data at 298K. fRef. 86. gRef. 87 
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orbital, high in energy. Fig. 4.2 shows that while 2VF2Cp2 has a 5 hapticity for both Cp 

rings, 4VF2Cp2, has a 5 hapticity for one Cp ring, but seems to have a 2 hapticity for 

the other one. 

  a b c Exp. 
 

 

d(S-F) 
(F-S-F) 

1.586 
90.0 

1.561 
90.0 

1.593 
90.0 

1.557d 

 

d(S-F2,3,5,6) 
d(S-F4) 

 (F2,3,5,6-S-F2,3,5,6) 
 (F2,3,5,6-S-F4) 

1.630 
1.576 
90.0 
91.2 

1.595 
1.540 

 
91.6 

1.623 
1.577 
90.0 
91.4 

 

 

d(S-F3,5) 
d(S-F2,4) 

 (F3-S-F5) 
 (F2-S-F4) 
 (F3,5-S-F2,4) 

1.655 
1.594 
171.7 
100.9 
87.3 

1.645 
1.548 
172.1 
101.4 
87.5 

1.663 
1.585 
171.1 
102.0 
87.2 

1.646e 

1.545e 

173.1e 

101.6e 

Fig. 4.1. Structural parameters for 1SF6, 
2SF5 and 1SF4. All the distances are in Ångstroms, and the angles are in 

degrees. 
aThis work, b RCCSD(T)/AVQZ Ref. 70, cMP2=full/6-31G* Ref. 72, dRef. 83, eRef. 84 

 

Fig. 4.3 shows the anti-bonding nature of the LUMO of 2VF2Cp2, with an anti-bonding 

interaction between the dxz orbital of the vanadium and the  orbitals of the 

cyclopentadienyl rings. Experimental values for the structure of 3VFCp2, shown in Fig. 

4.2. are in qualitative agreement with the values obtained in this work. For some 

unknown reason the optimization of the low spin 2VCp2 was more difficult. However, a 

bent structure, also shown in Fig. 4.2, is found after optimizing this molecule with a 

very tight convergence criterion. But a frequencies calculation (Table 4.3) shows that 

this structure does not belong to an absolute minimum since the smallest vibrational 

frequency has a negative value with respect to the angle orthogonal to the bending angle 

of the Cp rings. Due to time limitations and in spite of not being an absolute minimum 
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we have have taken that shown in Fig. 4.2. as the minimum as all tests done did not give 

any lower energy structure. The bending angles of low spin electronic configurations for 

other metallocenes have been calculated to be smaller than 180 degrees55. For the 

minimum of 4VCp2 a parallel conformation of the Cp rings is obtained, which 

exemplifies how the occupation of the d orbitals controls the bending angle. 

4VCp2 
2VCp2 

3VFCp2 

 
  

Average d(V-C) 
Bending angle 
Cp rotation angle 

2.281 
180.0 
0.0 

Average d(V-C) 
Bending angle 
Cp rotation angle 

2.200 
165.2 
0.0 

Average d(V-C) 
d(V-F) 
Bending angle 
Cp rotation angle 

2.336 
(2.291)a 

1.797 
(1.913)a 

145.2 
(143.4)a 

0.3 
1VFCp2 

4VF2Cp2 
2VF2Cp2 

 
  

Average d(V-C) 
d(V-F) 
Bending angle 
Cp rotation angle 

2.290 
1.767 
143.5 
0.4 

Average d(V- 5Cp) 
Average d(V- 2Cp) 
d(V-F1) 
d(V-F2) 

(F-V-F) 

2.330 
2.475 
1.768 
1.778 
106.8 

Average d(V-Cp1) 
Average d(V-Cp2) 
d(V-F1) 
d(V-F2) 

(F-V-F) 
Bending angle 
Cp rotation angle 

2.355 
2.361 
1.797 
1.797 
86.2 
133.9 
38.9 

Fig. 4.2. Geometries of the low and high spin VFxCp2 (x = 0,1,2) complexes at the B3LYP/3-21G* level. Experimental 
values are in parenthesis. 
aRef. 1 
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Table 4.3.  Results of the frequencies calculations to evaluate the reliance 

of the calculated minima. The three lower frequency values are listed for each 

molecule. All the values are in cm-1. Experimental values are in parenthesis. 

1SF6 
2SF5 

1SF4 
4VCp2 

325.4 (347a) 
325.4 (347a) 
325.4 (347a) 

209.3 
321.1 
321.2 

209.3 
321.1 
321.2 

27.6 
104.1 
104.6 

2VCp2 
3VFCp2 

1VFCp2 
4VF2Cp2 

-41.6 
62.5 
101.6 

10.6 
52.5 
167.5 

33.2 
80.8 
165.4 

39.4 
45.9 
82.9 

2VF2Cp2    

19.6 
63.1 
181.2 

   

aRef. 89. bRef. 90 & 91. 

The spin allowed reactions for the VCp2 + SF6 reaction are numbered from 4.1 to 4.6. 

Electronic configurations of the frontier orbitals are shown also: 

a) Mono-fluorination 

4VCp2 + 1SF6  3VFCp2 + 2SF5            (4.1) 

  

2VCp2 + 1SF6  3VFCp2 + 2SF5           (4.2) 

  

2VCp2 + 1SF6  1VFCp2 + 2SF5           (4.3) 

  

b) Bi-fluorination 

3VFCp2 + 2SF5  4VF2Cp2 + 1SF4           (4.4) 

 

           

3VFCp2 + 2SF5  2VF2Cp2 + 1SF4           (4.5) 

Fig. 4.6. LUMO of the 2VF2Cp2. Anti-
bonding overlap can be appreciated 
between the ring  orbitals and the 
dxy orbital of the vanadium. 
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1VFCp2 + 2SF5  2VF2Cp2 + 1SF4           (4.6) 

   

 

 

4.2. THE MONO-FLUORINATION REACTION OF THE HIGH SPIN 

VANADOCENE 

 

4.2.1. A THERMODYNAMIC PROFILE 

 

Fig. 4.4 shows a diagram of energies of the isolated reactants and products for the first 

and second fluorination (reactions 3.1 and 3.2) for all spin states allowed. This can be 

done by adding the energy of the isolated interacting fragments. The minimum 

thermodynamic path is from the 4VCp2 to the 3VFCp2, and then to the 2VF2Cp2. A small 

stabilizing decrease in energy (5.2 kcal mol-1 at the B3LYP/3-21G* level) exists for the 

 

Fig. 4.4. Energy diagram showing the relative energies between the different steps considered. Each of the 
energies corresponds to the sum of the energies of two molecules calculated separately. The diagram also 
shows which reactions are spin-allowed connecting reactives and products through dotted lines. Relative 
zero energy is arbitrarily set on 4VCp2 + 1SF6. 
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first fluorination, and a larger decrease (52.8 kcal mol-1) is calculated when going from 

the mono-fluorinated vanadocene to the bi-fluorinated vanadocene. 

A better view can be obtained by looking at the interaction energy of the interacting 

fragments (that is, the cluster molecule 1 + molecule 2). For a detailed study of one of 

the reactions involved in the whole map, the mono-fluorination reaction of the high spin 
4VCp2, the supramolecular structures involving the molecules conforming reactives and 

the molecules conforming products, respectively, at a close distance need to be 

calculated. Supramolecules will be designed indicating the total multiplicity, as well as 

the multiplicity of each molecule to avoid ambiguity. To obtain the supramolecule of 

the reactives, 4(4VCp2-
1SF6), the two optimized geometries are simply put together and 

optimized. The same procedure is followed to find the supramolecule of products, 
4(3VFCp2-

2SF5). The energy minima have been confirmed with frequencies calculations 

(see Table 4.5). The charge distribution and the spin density of the supramolecules 

obtained are nearly equivalent to the charge distribution and the spin density of the 

separated species and in any case no remarkable differences arise (Mulliken atomic 

charges and Mulliken spin density populations for isolated molecules and 

supramolecules are compared in appendices A2). 

The optimum geometries of these aggregates, shown in Table 4.4, when compared to 

those for the isolated species of Figures 4.1 and 4.2, they present some slight 

differences. The most notable may be the variation of the relative rotation angle of the 

Cp rings in the case of 3VFCp2. In the isolated specie, that angle has a value of nearly 0º 

(0.3º), i.e. the rings are eclipsed; while in the supramolecule 4(3VFCp2-
2SF5) it has a 

value of 31.7º, which corresponds to a nearly staggered ring conformation. The 

staggered conformation allows one of the two axial fluorine atoms to be at an 

appropriate H···F interaction distance of two hydrogen atoms (2.425 and 2.461  

respectively), thus maximizing the number of H···F stabilizing interactions, while in the 

eclipsed conformation only one H···F interaction can be properly established by each of 

the axial fluorine atoms. For H···F interactions in crystals involving neutral species, 

where the hydrogen atom is bound to a carbon atom, distances H-F have been found to 

range from 2.320  to 2.912 88. 
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The barrier estimated for the rotation of the two Cp rings at the B3LYP/3-21G* level 

(see Appendices A3) is about 0.2 kcal mol-1. A very low value –one order of magnitude 

lower than the estimated value of 1-2 kcal mol-1 on Ref. 57- which readily allows us to 

suppose that a free rotation of the Cp rings is permitted.  

The heat of formation ( Ef,SUP.R) for the formation of the supramolecules at the 

B3LYP/3-21G* level is of 12.0 kcal mol-1, {calculated as E(1SF6) + E(4VCp2) – 

E[4(4VCp2-
1SF6)]}, and 32.6 kcal mol-1 for products {E(2SF5) + E(3VFCp2) – 

E[4(3VFCp2-
2SF5)]}. As a consequence the aggregate for the products is more stable 

than that for the reactants (by 25.8 kcal mol-1). Those energies are represented in Fig. 

4.5., together with those of the isolated fragments. The Ef,SUP.P for the supramolecule 

Table 4.4. Geometries of the 4(4VCp2-
1SF6) and 4(3VFCp2-

2SF5) supramolecules. Distances are expressed in 
Angstroms, angles are expressed in degrees. 

4(VCp2-SF6) 

 

4(VFCp2-SF5) 

 
Average d(V-Cp) 2.282 

Average d(V-Cp’) 2.282 
Cp bending angle 175.2 
Cp rotation angle -0.6 
d(V-F22) 3.506 
d(V-F24) 3.498 
d(S-F22) 1.592 
d(S-F24) 1.593 
Average d(S-F26,27) 1.594 
Average d(S-F25,28) 1.584 

 (F26-S-F27) 179.2 
 (F22-S-F24) 89.8 
 (F25-S-F28) 90.4 

d(F26-H11) 2.272 
d(F27-H18) 2.273 
Average d(F22-H11,18) 2.591 
Average d(F24-H11,18) 2.590  

Average d(V-Cp) 2.318 

Average d(V-Cp’) 2.316 

Cp bending angle 143.9 

Cp rotation angle 31.7 

d(V-F22) 1.902 

d(V-F24) 2.807 

d(S-F22) 2.245 

d(S-F24) 1.710 

Average d(S-F26,27) 1.664 

Average d(S-F25,28) 1.609 

 (F26-S-F27) 178.3 

d(S-F28) 1.586 

Average d(S-F24,25,26,27) 1.667 

Average (F28-S-F24,25,26,27) 90.0 

Average  (F24,25,26,27-S-F24,25,26,37) 90.0 

d(F27-H18) 2.415 

d(F27-H20) 2.461 

d(F26-H11) 2.185 

d(F24-H20) 2.525 

d(F24-H11) 2.727 

d(F22-H18) 2.616 

d(F22-H11) 2.766 
 

E = -2316.587531 a. u. E = -2316.628637 a. u. 
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of products is more than two times those found 

for the reactives and can be hardly explained by 

H···F interactions alone. 

 

 

 
Fig. 4.5. Energy diagram for the monofluorination reaction of 4VCp2 with 1SF6. 

4VCp2+
1SF6 are the reactives calculated 

separately; 4(VCp2-SF6) represents the supramolecule of reactives. 3VFCp2+
2SF5 are the separate products; while 

4(VFCp2+SF5) accounts for the supramolecule of products. The zero of the scale is arbitrarily placed in reactants 
aggregate. 

In order to confirm the validity of the 

Ef,SUP.R and Ef,SUP.P, a set of calculations 

fixing different S-F distances and 

optimizing each geometry is performed on 

the 4(4VCp2-
1SF6) aggregate (Fig. 4.6). An 

equivalent procedure for the supramolecule 

of products yields the curve in Fig. 4.7. 

From the geometries obtained (see 

Appendices A4) it is possible to observe 

that the SF6 moves away from the VCp2 

molecule keeping as many F···H 

 
Fig. 4.6. Interaction energy curve for the 
supramolecule of reactives as a function of the V···S 

distance. The geometry was optimized on each point. 
The curve exhibits a nearly linear trend from 4.4 to 7.2 

. The energy increases as the SF6 moves away from 
the VCp2, until it reaches a constant value in which the 
two molecules are too far apart to interact. 

Table 4.5. Results of the frequencies 
calculations to evaluate the reliance of the 
calculated minima. The three lower frequency 
values are listed for each molecule. All the 
values are in cm-1. Experimental values are in 
parenthesis. 

4(4VCp2-
1SF6) 

4(3VFCp2-
2SF5) 

19.6 
27.5 
56.8 

35.3 
56.5 
77.9 
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interactions as possible. Even at 

relatively long S-V distances, H···F 

interactions between the fluorine atoms 

of the SF6 and the protruding hydrogen 

atoms of the Cp rings are established. 

The H···F interactions in the 

supramolecule can justify a stabilitation 

of 12.0 kcal/mol in reactants. 

However, the H···F interactions present 

in the products supramolecule alone 

hardly account for the 32.6 kcal mol-1 involved in the separation of the 2SF5 and the 
3VFCp2. The remaining stabilizing contribution to the energy comes from a dipole-

dipole interaction between the two molecules. As shown in Fig. 4.8, a permanent dipole 

moment exists in the SF5 and VFCp2 species. In the supramolecule 4(3VFCp2-
2SF5) the 

two dipoles orient themselves in order to stabilize the system. 

 

4.2.2. A KINETIC PROFILE I. POTENTIAL ENERGY CURVE 

 

To determine the kinetics of the F addition to VCp2 from SF6 one has to locate the 

transition state of the reaction of the transference. For that purpose, a potential energy 

curve was calculated, taking as a reaction coordinate the distance between the sulfur 

atom and the fluorine that is transferred to the vanadium. Along the reaction path, a 

sulfur-fluorine bond is broken, a vanadium-fluorine bond is formed and the Cp rings 

2SF5 
3VFCp2 

4(SF5-VFCp2) 
Total dipole moment 
0.5797 D 

Total dipole moment 
1.7779 D 

Total dipole moment 
3.5885 D 

 

  

Fig. 4.8. Electron density and values of dipole moment for  2SF5, 
3VFCp2 and 4(SF5-VFCp2). 

 

Fig. 4.7. Interaction energy curve for the supramolecule of 
products as a function of the V···S distance. Two different 
slopes can be identified: A fast increase from 3.2 to 5.0 , 

and a more moderate increase from 5.0 to around 7.0 . 
From 7.0   and on the energy becomes approximately 
constant. 
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bent. The first choice as reaction coordinate is the S-F distance. The V-F distance could 

be also selected. Two starting points could be taken to compute the curve: From 

reactives (Fig. 4.9) and from products (Fig. 4.10). In both cases, there is a large 

discontinuity in the zone supposedly close to the transition state, in which one would 

expect to find a maximum, with a sudden change in geometry: When going from 

reactives to products, at a S-F distance of 1.78 , the structure resembles that of 

reactives, with parallel rings. Elongating the distance in 0.01  causes a sudden bending 

and a big step on energy appears. 

 

For the products supramolecule, whose curve is represented in Fig. 4.10, through the 

same energy step is appreciated, there is an additional consideration: When, in the 

supramolecule 4(3VFCp2-
2SF5), one fluorine atom moves away from vanadium to bind 

to sulfur, the neighboring fluorine atom tends to form a new bond with the vanadium 

atom, which supports the fact that the V-F bond is more stable than the S-F bond and 

the reaction is thermodynamically favorable. That means that for calculating the 

potential energy curve from products to reactives some restriction has to be done, either 

fixing the distance S-F or the distance V-F. The zone of the curve near to the reactives 

in Fig. 4.10 is then calculated fixing the distance from the sulfur atom to the fluorine 

that is transferred at different lengths, while the distance between the sulfur atom and 

the second fluorine nearest to the vanadium in maintained fixed at 1.631 . A step in 

 

Fig. 4.9. Potential energy curve, calculated starting from the supramolecule of 
reactives. An abrupt step can be seen with a sudden change in geometry, and no 
smooth barrier allowing to obtain a reasonable initial geometry for the transition 
state optimization is found. The geometries corresponding to the two sides of the 
step are displayed. For energy values see Appendices A5. 
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the energy around a distance S-F of 1.6-1.65  is appreciated, and it is remarkably 

differently located than the step found on the curve of Fig. 4.9 from reactives to 

products, around a S-F distance of 1.8 . The sudden change in the bending angle of the 

two Cp rings is also noticeable: The two Cp rings keep a bent conformation nearly 

untouched when decreasing the F-S distance, but once the energy step takes place, the 

bending angle is suddenly increased and the Cp rings adopt a nearly parallel 

conformation. 

 

 

4.2.3. A KINETIC PROFILE II. POTENTIAL ENERGY SURFACE 

 

The potential energy curve built with the S-F distance as the only reaction coordinate 

does not allow to define a starting geometry for locating the transition state (Fig. 4.9 and 

4.10), this suggests that other coordinates are important to define that transition state. 

Another potential energy curve built taking the bending angle as the main reaction 

coordinate gave results similar to those shown in Fig. 4.9 and 4.10 (see Appendices 

A6). 

 

Fig. 4.10. Potential energy curve, calculated starting from the products 
supramolecule. Black points are calculated fixing only the S-F distance. Empty points 
are calculated fixing the distance between the sulfur and the second nearest to 
vanadium fluorine atom to 1.631 . The geometries corresponding to the two sides of 
the step are displayed. For energy values see Appendices A5. 
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To overcome the problem of finding a starting geometry from which determine the 

transition state, a potential energy surface is built taking as reaction coordinates the V-F 

distance and the bending angle, fixing these parameters to different values and 

optimizing the geometry in each point. 

 

4.2.3.1. DESIGN OF THE Z-MATRIX 

 

To properly control the bending angle and the vanadium-fluorine distances the 

geometry must be expressed as a z-matrix built in a specific way. 16 dummy atoms are 

introduced and several constraints are required too. One dummy atom is located at the 

centroid of each ring, and the distances from the carbon atoms to its centroid are 

imposed to be equivalent, restricting the Cp rings to be regular pentagons. The angle 

formed by the carbon atoms of the Cp rings, the dummy in the center of that ring and 

the vanadium atom is imposed to be of 90º; two dummies are attached also to the 

vanadium, forming a 90º angle in between, to control the two orthogonal angles that 

exist between the two dummies located at the ring centroids and the vanadium. To 

properly control the bending angle of the VCp2 molecule, one of those orthogonal 

angles must be constrained to be of 90º, while the other acts as the bending angle. The 

vanadium to fluorine distances are well defined within the z-matrix, both for the 

fluorine that is being transferred as well as for the second nearest fluorine to the 

vanadium atom. This is done in order to avoid that, for long fluorine-vanadium 

distances and bent geometries, the second fluorine atom closer to vanadium 

spontaneously binds to the vanadium atom (this is the same effect already observed in 

the curve of fig. 3.10). For a few geometries (i.e. some of those where the Cp rings are 

very bent back -120º-), in fact all the fluorine-vanadium distances must be fixed to 

avoid the bonding of an undesired fluorine atom to the vanadium. A more detailed 

explanation for the constraints as well as an example for this z-matrix are found in 

section A7 of the Appendices. 

 

 



 

 53 

4.2.3.2. BUILDING THE POTENTIAL ENERGY SURFACE 

 

Once the z-matrix is constructed and tested so that it can effectively represent both the 

geometry and energy of reactives and products, for the matter of building the surface a 

pretty simple procedure is 

followed: For the initial 

geometry, a fixed V-F 

distance of 3.5  and a 

fixed bending angle  of 

180º are taken (which 

represents a structure 

similar to the structure of 

the reactives) and the 

supramolecule is optimized 

with those constraints. This 

optimized structure is 

utilized to optimize three 

more points: (3.5 ; 168º), 

(3.1 ; 180º) and (3.1 ; 

168º), with 0.4  steps for 

the distance and 12º steps 

for the angle. Fig. 4.11 

summarizes the order in 

which the points of the 

surface have been 

calculated, as well as the 

geometrical restrictions involving each of them. In nearly half of the points the distance 

from the vanadium to the second nearest fluorine atom must be fixed too to avoid the 

formation of an undesired V-F bond. That restriction is applied in general where V-F 

distances are large and bending angles are small. After a first set of calculations, a 

second set of calculations with a 0.2  step for the V-F distance and a 6º step for the  

angle is performed utilizing the geometries of the points already obtained, to increase 

the resolution of the surface. 

Fig. 4.11. Schematic grid showing the general procedure followed to 
calculate the potential energy surface. Black points represent the 
geometries that were optimized in a first calculation of the surface, and 
the arrows connecting them show the order in which were calculated and 

which point was used as initial geometry in each case. Empty points 
were calculated after all the black points were calculated, to make the 
surface look finer. 
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Two views of the potential energy surface obtained are shown in fig. 4.16, a low barrier 

is observed separating reactives and products. In both the zones of reactives and 

products, the surfaces are fairly smooth. To go from reactives to products a 

simultaneous shortening of the V-F distance and a bending of the Cp rings is required. 

This explains the discontinuity observed in the potential energy curves shown in Figures 

4.9 and 4.10. 

The absolute minimum of the potential energy surface corresponds to the point (1.9 ; 

144º) –while the respective coordinates for the energy minimum of the supramolecule 

of products are 1.902  and 143.9º-. The energy difference between the true B3LYP/3-

21G* theoretical minimum and the value obtained from the potential energy surface, 

calculated as {E[4(3VFCp2-
2SF5)(1.9;144)] – E[4(3VFCp2-

2SF5)min]} is of 0.3 kcal mol-1. 

The minimum value of the surface around the zone of reactives corresponds to the point 

(3.3 ; 174º) while the respective values for the true B3LYP/3-21G* theoretical 

minimum of the supramolecule of reactives are 3.06  and 175.2º and the energy 

difference calculated as {E[4(4VCp2-
1SF6)(3.3;174)] – E[4(4VCp2-

1SF6)min]} is of 0.04 kcal 

mol-1, a negligible value. The structures obtained from the surface calculations represent 

very well the optimized structures corresponding to the minima. 
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Fig. 4.12. Relaxed potential energy surface for the transference of one fluorine atom from 1SF6 to 
4VCp2 to yield 2SF5 and 3VFCp2. The points nearest to reactives, products and the hypothetical 
transition state and their coordinates are shown in parentheses (V-F distance in ; bending angle  in 
degrees). 
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4.2.3.3. LOCATING THE TRANSITION STATE 

 

For finding the transition state, the point (2.5 ; 162º) is chosen as an initial starting 

point (Fig. 4.12). The geometry constraints are no longer imposed and the 

supramolecule is optimized using redundant internal coordinates, evaluating the Hessian 

in each point of the optimization and making use of extremely tight optimization 

convergence criteria. 

The structure computed for the transition state is shown in Fig. 4.13, It has a total 

energy of -2316.581131 atomic units. The nature of the optimized structure is evaluated 

with a frequencies calculation and one imaginary frequency –being all the others real- is 

obtained. The mode associated with the negative frequency, whose value is -309.7382 

cm-1, corresponds to the transference of one fluorine atom from the sulfur to the 

vanadium, as shown in figure 4.14. 

 

The structure of the transition state shows intermediate values for the distances and 

angles that range between the values of the reactives and the products. However, H···F 

distances are longer than in supramolecules of both reactives and products. 

 

Average d(V-Cp1) 2.301 

Average d(V-Cp2) 2.302 
Cp bending angle 160.6 
Cp rotation angle 19.7 
d(V-F22) 2.453 
d(V-F24) 3.333 
d(S-F22) 1.674 
d(S-F24) 1.619 
Average d(S-F26,27) 1.614 
Average d(S-F24,28) 1.596 

(F26-S-F27) 178.7 
 (F22-S-F24) 88.2 
 (F24-S-F28) 91.1 

d(F27-H7) 2.326 
d(F26-H17) 2.476 
d(F26-H18) 2.593  

Fig. 4.13. Transition state geometry obtained at the B3LYP/3-21G* level. Distances are expressed in Angstroms, 
angles are expressed in degrees. 
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4.2.4. POTENTIAL ENERGY DIAGRAM FOR THE MONO-FLUORINATION 

REACTION AT THE 3-21G* LEVEL 

 

Figure 4.15 shows how the transition state found generates a low energy barrier for the 

mono-fluorination. The height of the barrier from the reactives supramolecule is of 4.0 

kcal mol-1, and from the products supramolecule is of 29.8 kcal mol-1. In a general 

overview of the reaction, the isolated reactives 4VCp2 and 1SF6 meet and form the 

supramolecule 4(4VCp2-
1SF6), stabilized by intermolecular H···F bonds (specifically 

between the axial fluorine atoms and the two hydrogens of the Cp rings facing the SF6 

molecule) that lower the energy in 12 kcal mol-1, while two equatorial fluorines face the 

vanadium atom. From this geometry, the system can readily transfer one fluorine atom 

from the sulfur to the vanadium. The reaction involves a barrier of 4.0 kcal mol-1. The 

analysis of the frontier orbitals of the transition state shows the set of three d-mixed 

orbitals of a1 and b2 symmetry expected for a bent vanadocene (Fig. 4.16). 

 

 

Fig. 4.14. Representation of the negative 
eigenvalue of the Hessian for the transition state 
structure found at B3LYP/3-21G* level. The 
displacement corresponds to the motion of the 
fluorine atom towards the vanadium atom. 
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The potential energy from the transition state to the supramolecule of products 
4(3VFCp2-

2SF5) is of 29.8 kcal mol-1, and the gain in potential energy of going from 
4(4VCp2-

1SF6) to 4(3VFCp2-
2SF5) is of 25.8 kcal mol-1, but this gain is lost when the two 

molecules that form the supramolecular product are separated. 

 

4.3. A THERMODYNAMIC PROFILE FOR THE BI-FLUORINATION REACTION 

 

The thermodynamic profile for bi-fluorination reaction (3.3) can be in an analogous way 

to the mono-fluorination. Fig. 4.17 shows geometries and total energies obtained for 

SOMO 
EKS = -5.24 eV 

SOMO 
EKS = -4.89 eV 

SOMO 
EKS = -4.28 eV 

  
 

 

Fig. 4.16. Frontier orbitals of the transition state and their Kohn-Sham energies. The two lowest 

energy SOMO do not directly intervene in the transformation from reactives to products, but the 
other one, with its lobe pointing directly to the fluorine, shows an interaction with the 1SF6. 

 

Fig. 4.15. Energy diagram for the monofluorination reaction of the high spin 4VCp2. Energies are expressed in kcal 
mol-1. In this picture, the inclusion of the transition state energy, shows a low barrier. The zero of the scale is 
arbitrarily set in reactants aggregate. The zero of the scale is arbitrarily set in reactants aggregate. 
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2[2VF2Cp2-
1SF4] and 4[4VF2Cp2-

1SF4]. The two structures are confirmed as minima with 

a frequencies calculation (Table 4.7). 

 

The energy diagram in Fig. 4.18 shows the relative 

energy differences between isolated reactants and 

products and the respective aggregates. The heat of 

formation for 2(2VF2Cp2-
1SF4) and 4(4VF2Cp2-

1SF4) is 

of 24.2 kcal mol-1and 24.3 kcal mol-1 respectively. In 

an analogous way to the supramolecule 4[3VFCp2-
2SF5] 

(section 4.3.1) the stabilizing contribution to the energy of those aggregates comes from 

H···F interactions and dipole-dipole interactions. Fig. 4.19 shows the permanent dipole 

that exists in SF4 and in VF2Cp2 and how in the supramolecule the two dipoles are 

 

Average d(V-Cp1) 2.334 

Average d(V-Cp2) 2.354 
Cp bending angle 134.0 
Cp rotation angle 41.65 

(F22-V-F25) 86.1 
d(V-F22) 1.791 
d(V-F25) 1.855 
d(S-F22) 3.578 
d(S-F25) 2.299 
Average d(S-F26,27) 1.709 
Average d(S-F24,28) 1.608 
Average (F24,28-S-F26,27) 86.3 

 (F24-S-F28) 95.1 
 (F26-S-F27) 170.3 

d(F27-H7) 2.003 
d(F28-H7) 2.423 
d(F28-H8) 2.351 

E = -2316.699293 a.u. 

 

Average d(V-Cp) 2.327 

Average d(V-C2,3) 2.511 
d(V-F22) 1.768 
d(V-F25) 1.815 
d(S-F22) 4.111 
d(S-F25) 2.287 
Average d(S-F26,27) 1.719 
Average d(S-F24,28) 1.605 
Average (F24,28-S-F26,27) 86.5 

 (F24-S-F28) 95.0 
 (F26-S-F27) 170.9 

d(F27-H7) 1.987 
d(F28-H7) 2.396 
d(F28-H8) 2.357 

E = -2316.654407 a.u. 

Fig. 4.17. Geometry of the 2(2VF2Cp2-
1SF4) and 4(4VF2Cp2-

1SF4) supramolecules. Distances are expressed in 
Angstroms, angles are expressed in degrees. 

Table 4.7. The three lower 
frequency values for 2(2VF2Cp2-
1SF4) and 4(4VF2Cp2-

1SF4). All the 
values are in cm-1. Experimental 
values are in parenthesis. 

2(2VF2Cp2-
1SF4) 

4(4VF2Cp2-
1SF4)

 

34.9 
40.0 
57.6 

35.1 
40.7 
69.7 
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oriented to effectively interact. Due to time limiations, the transition states could not be 

computed, but will be obtained later on. Such transition state must exist or otherwise the 

VFCp2 aggregate would not be stable. 

 

 

A curve for the formation of the aggregates from the isolated molecules was not done 

for time reasons. 

1SF4 
2VF2Cp2 

2(SF4-VF2Cp2) 
Total dipole moment 
1.0145 D 

Total dipole moment 
3.4661 D 

Total dipole moment 
3.3986 D 

 
 

Fig. 4.19. Electron density and values of dipole moment for  1SF4, 
2VF2Cp2 and 2(1SF4-

2VFCp2). 

 

Fig. 4.18. Energy diagram for the fluorination reaction of 3VFCp2 with 2SF5. 
3VFCp2+

2SF5 are the reactives calculated 

separately; 4(VFCp2-SF5) represents the supramolecule of reactives. 4VF2Cp2+
1SF4 and 2VF2Cp2+

1SF4 are the high 
spin and low spin separate products; while 4(VF2Cp2+SF4) and 2(VF2Cp2+SF4) are the high spin and low spin products 
supramolecules. The zero of the E scale is arbitrarily placed in reactants aggregate. 
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Although 2VCp2 is 39.8 kcal mol-1 higher than 4VCp2, a thermodynamic study of 

reactions 4.2 and 4.3 (and 4.6) geometry optimizations of the corresponding 

supramolecules [i.e. 2(2VCp2-
1SF6) for 4.2 and 4.3 and 2(1VFCp2-

2SF5) for 4.6] was 

done. All of them yielded directly 2(2VF2Cp2-
1SF4) –Fig. 4.19 shows the resulting 

structure, with two fluorine atoms bound to vanadium but with a slightly different 

position of the SF4 molecule respect to the VF2Cp2 geometry than in Fig. 4.16. The 

structure in Fig. 4.19 has an energy 1.9 kcal mol-1 smaller than the 2(2VF2Cp2-
1SF4) 

structure in Fig. 4.16, and it has been confirmed to be a minimum with a frequencies 

calculation (the three lowest frequencies are of 11.0, 42.7 and 54.6 cm-1). Consequently 

in reaction 4.2 the transference of fluorine atoms to the low spin 2VCp2 and 1VFCp2 

molecules takes place without kinetic barrier. 

 

 

Fig. 4.20. 2(2VF2Cp2-
1SF4). Structure obtained from the optimization of  

2(2 VCp2-
1SF6) and 2(1VFCp2-

2SF5). 
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5. CONCLUSIONS 

 

• The ground states for the vanadocene compounds are the high spin species in the 

case of the non-fluorinated and the mono-fluorinated species. However, the 

ground state of the bi-fluorinated vanadocene has a low spin doublet electronic 

configuration. 4VCp2 shows a parallel disposition of the two Cp rings. In the 

case of the 2VCp2, the two rings are bent. However, the fact that a theoretical 

minimum was not fully achieved for this system (not all frequencies are 

negative) does not allow us to confirm this statement. 

 

• The 4VF2Cp2 structure shows a decrease in the hapticity of one of the two Cp 

rings, this could be explained by the occupation of a high spin orbital with anti-

bonding vanadium – Cp -orbital character that appears when a second fluorine 

atom combines with the frontier orbitals of the VFCp2. 

 

• For the first fluorination (SF6 + VCp2  SF5 + VFCp2) the reaction has three 

stages: 

 

1) Reactants supramolecule formation from isolated reactants with a E = -12.0 

kcal mol-1. 

2) Transference of one fluorine atom with a E = -25.8 kcal mol-1 and a 

transition state 4.0 kcal mol-1 higher in energy than reactants. 

3) Isolated products formation from products supramolecule with a E = 32.6 

kcal mol-1. 

 Total E = -5.2 kcal mol-1. 

• For the second fluorination (SF5 + VFCp2  SF4 + VF2Cp2) the reaction has 

three stages: 

1) Reactants supramolecule formation from isolated reactants with a E = -32.6 

kcal mol-1. 

2) Transference of one fluorine atom with a E = -44.4 kcal mol-1 (to yield 
2VF2Cp2); -16.2 kcal mol-1 (to yield 4VF2Cp2). 
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3) Isolated products formation from products supramolecule with a E = 24.2 

kcal mol-1 (for 2VF2Cp2); 24.3 kcal mol-1 (for 4VF2Cp2). 

 Total E = -52.8 kcal mol-1 (2VF2Cp2); -24.5 kcal mol-1 (4VF2Cp2). 

• Fluorine transference to 2VCp2 and 1VFCp2 (SF6 + 2VCp2  SF4 + 2VF2Cp2 and 

SF5 + 1VFCp2  SF4 + 2VF2Cp2) takes place without a barrier and has two 

stages: 
1) Products supramolecule formation from isolated reactants with a E = -

122.0 kcal mol-1 (from 2VCp2); -86.6 kcal mol-1. 

2) Isolated products formation from products supramolecule with a E = 24.2 

kcal mol-1 

 Total E = -97.8 kcal mol-1 (2VCp2); -62.4 kcal mol-1 (1VFCp2). 
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Fig. 5.1 Global energy diagram for the reactions studied. 
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7. APPENDICES 

 

A1. Specific keywords utilized on Gaussian03 calculations: 

Nosymm: Disables the use of the standard orientation coordinates and the use of 
molecular symmetry within the calculation. 

OPT: 

 VERYTIGHT: Extremely tight optimization convergence criteria. 

 TS: Looks for a 1st order saddle point. 

 NOEIGENTEST: Suppresses testing the curvature in Berny optimizations. 
Diminishes the calculation costs. 

 CALCFC: Specifies that the force constants be computed at the first point using 
the current method. 

INTEGRAL: 

 ULTRAFINE: Recommended to use along the verytight keyword for DFT 
calculations and for computing very low frequency modes of systems. 

SCF: 

 XQC: Involves linear searches when far from convergence and Newton-Raphson 
steps when close. In case the first order SCF has not converged, adds an extra QC. 

 NOVARACC: Disables the use modest integral accuracy early in direct SCF. 

GUESS: 

 ALWAYS: Requests that a new initial guess be generated at each point of an 
optimization. 
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A2. Mulliken atomic charges and Mulliken atomic spin densities of the isolated 
reactives 1SF6, 

4VCp2 and products 2SF5, 
3VFCp2, and of the supramolecules 4(4VCp2-

1SF6), 
4(3VFCp2-

2SF5). 

A2.1. 

Mulliken atomic charges -Reactives 

  4(4VCp2-
1SF6) 

1SF6, 
4VCp2 Differenc

e 
C 1 -0,34741 -0,342229 -0,005181 

C 2 -0,342003 -0,342114 0,000111 

C 3 -0,346874 -0,342275 -0,004599 

C 4 -0,340578 -0,342276 0,001698 

C 5 -0,340926 -0,342567 0,001641 

C 6 -0,347981 -0,342526 -0,005455 

C 7 -0,341564 -0,342096 0,000532 

C 8 -0,346533 -0,342197 -0,004336 

C 9 -0,345501 -0,342427 -0,003074 

C 10 -0,344679 -0,342315 -0,002364 

H 11 0,175538 0,204214 -0,028676 

H 12 0,203507 0,204219 -0,000712 

H 13 0,203443 0,204219 -0,000776 

H 14 0,203307 0,204209 -0,000902 

H 15 0,203346 0,204194 -0,000848 

H 16 0,203161 0,204212 -0,001051 

H 17 0,203464 0,204223 -0,000759 

H 18 0,174421 0,204197 -0,029776 

H 19 0,203839 0,204215 -0,000376 

H 20 0,203778 0,204205 -0,000427 

V 21 1,32296 1,380916 -0,057956 

F 22 -0,262425 -0,281595 0,01917 

S 23 1,740014 1,689567 0,050447 

F 24 -0,263448 -0,281595 0,018147 

F 25 -0,268874 -0,281595 0,012721 

F 26 -0,266354 -0,281595 0,015241 

F 27 -0,266963 -0,281595 0,014632 

F 28 -0,268667 -0,281595 0,012928 

 

A2.2. 

Mulliken atomic spin densities -Reactives 

  4(4VCp2-
1SF6) 

1SF6, 
4VCp2 Difference 

C 1 0,01565 0,011877 0,003773 

C 2 0,009241 0,011818 -0,002577 

C 3 0,011295 0,011883 -0,000588 

C 4 0,010289 0,011845 -0,001556 

C 5 0,010266 0,011857 -0,001591 

C 6 0,011181 0,011856 -0,000675 

C 7 0,00937 0,011868 -0,002498 

C 8 0,015616 0,011881 0,003735 

C 9 0,010647 0,01183 -0,001183 

C 10 0,010759 0,011835 -0,001076 

H 11 0,002838 0,00305 -0,000212 

H 12 0,003004 0,003047 -4,3E-05 

H 13 0,003266 0,003052 0,000214 

H 14 0,002961 0,003057 -9,6E-05 

H 15 0,002986 0,003068 -0,000082 

H 16 0,003279 0,003061 0,000218 

H 17 0,002982 0,003049 -6,7E-05 

H 18 0,002858 0,00306 -0,000202 

H 19 0,003197 0,003059 0,000138 

H 20 0,003175 0,003058 0,000117 

V 21 2,852594 2,850888 0,001706 

F 22 0,00048 - 0,00048 

S 23 0,00083 - 0,00083 

F 24 0,000443 - 0,000443 

F 25 0,00016 - 0,00016 

F 26 0,000246 - 0,000246 

F 27 0,000258 - 0,000258 

F 28 0,000134 - 0,000134 
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A2.3. 

Mulliken atomic charges -Products 

  4(3VFCp2-
2SF5) 

2SF5, 
3VFCp2 Difference 

C 1 -0,310505 -0,215185 0,09532 

C 2 -0,345804 -0,329513 0,016291 

C 3 -0,318182 -0,343816 -0,025634 

C 4 -0,325284 -0,330576 -0,005292 

C 5 -0,330087 -0,330253 -0,000166 

C 6 -0,340161 -0,343654 -0,003493 

C 7 -0,314387 -0,330272 -0,015885 

C 8 -0,262677 -0,215872 0,046805 

C 9 -0,322048 -0,343711 -0,021663 

C 10 -0,318801 -0,343577 -0,024776 

H 11 0,228939 0,228063 -0,000876 

H 12 0,217797 0,20845 -0,009347 

H 13 0,228202 0,215916 -0,012286 

H 14 0,215511 0,208884 -0,006627 

H 15 0,213178 0,208608 -0,00457 

H 16 0,221372 0,216133 -0,005239 

H 17 0,218902 0,208675 -0,010227 

H 18 0,23353 0,228044 -0,005486 

H 19 0,228377 0,215995 -0,012382 

H 20 0,228834 0,215862 -0,012972 

V 21 1,279538 1,310735 0,031197 

F 22 -0,321868 -0,338936 -0,017068 

S 23 1,458812 1,442404 -0,016408 

F 24 -0,297266 -0,293092 0,004174 

F 25 -0,287222 -0,293092 -0,00587 

F 26 -0,296143 -0,292844 0,003299 

F 27 -0,306223 -0,292945 0,013278 

F 28 -0,276332 -0,270431 0,005901 

 

A2.5. 

Transition State Mulliken atomic charges Mulliken atomic spin density 

1 V 1,237393 2,730975 

2 C -0,318674 0,018977 

3 C -0,339663 -0,003687 

4 C -0,342095 -0,006404 

5 C -0,329327 0,005116 

6 C -0,336332 0,003354 

7 H 0,197174 0,000572 

8 H 0,21048 0,003094 

9 H 0,208002 0,002534 

10 H 0,208302 0,00255 

11 H 0,208317 0,002417 

12 C -0,342356 0,018303 

13 C -0,307794 0,005588 

14 C -0,340333 0,006929 

15 C -0,338158 -0,008879 

16 C -0,341673 -0,002746 

17 H 0,20245 0,001415 

18 H 0,20408 0,00134 

19 H 0,207342 0,002673 

20 H 0,208248 0,002886 

A2.4. 

Mulliken atomic spin densities -Products 

  4(3VFCp2-
2SF5) 

2SF5, 
3VFCp2 Difference 

C 1 -0,007542 -0,056069 0,048527 

C 2 -0,040128 -0,026471 -0,013657 

C 3 -0,009282 0,042784 -0,052066 

C 4 -0,033452 -0,030503 -0,002949 

C 5 -0,010583 -0,028348 0,017765 

C 6 0,03744 0,044425 -0,006985 

C 7 -0,039011 -0,028861 -0,01015 

C 8 -0,066816 -0,055806 -0,01101 

C 9 0,009446 0,043241 -0,033795 

C 10 0,04895 0,041155 0,007795 

H 11 0,000226 0,002692 -0,002466 

H 12 0,003642 0,002953 0,000689 

H 13 0,002359 0,000299 0,00206 

H 14 0,002941 0,003336 -0,000395 

H 15 0,000778 0,003139 -0,002361 

H 16 0,000791 0,000208 0,000583 

H 17 0,003785 0,003182 0,000603 

H 18 0,002859 0,002682 0,000177 

H 19 0,001026 0,000266 0,00076 

H 20 -0,000647 0,000374 -0,001021 

V 21 2,09203 2,004271 0,087759 

F 22 0,12748 0,031049 0,096431 

S 23 0,351803 0,441019 -0,089216 

F 24 0,141205 0,141412 -0,000207 

F 25 0,121788 0,141412 -0,019624 

F 26 0,131371 0,141173 -0,009802 

F 27 0,12902 0,140967 -0,011947 

F 28 -0,00148 -0,005982 0,004502 
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21 H 0,209553 0,002834 

22 F -0,264173 0,005495 

23 S 1,699194 0,092578 

24 F -0,279001 0,030034 

25 F -0,280483 0,021493 

26 F -0,284184 0,025019 

27 F -0,280693 0,027561 

28 F -0,275595 0,007979 

 

A3. Rotational barrier of the cyclopentadienyl rings of 4VCp2 at the B3LYP/3-21G* 
level. Relative energy is expressed in kcal mol-1. 

 

Angle  Relative energy Angle  Relative energy 

180 0,00 141 0,21 

177 0,00 138 0,19 

174 0,00 135 0,17 

171 0,01 132 0,15 

168 0,04 129 0,13 

165 0,08 126 0,11 

162 0,11 123 0,08 

159 0,13 120 0,04 

156 0,15 117 0,01 

153 0,17 114 0,00 

150 0,19 111 0,00 

147 0,21 108 0,00 

144 0,23   

 

A4. Scheme showing the optimized geometries at different S-V distances, for the 
separation of the supramolecules of reactives and products; as well as the corresponding 
energy values for each distance. The distances under each picture are S-V distance 
values. Distances of the tables are in , and relative energies are in kcal mol-1. 
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A4.1. Reactives 

 

d(S-V) Relative energy d(S-V) Relative energy 

4,4 -0,1 6,2 6,5 

4,6 0,0 6,4 7,4 

4,8 0,8 6,8 8,2 

5 2,0 7,2 10,8 

5,2 2,5 7,6 11,2 

5,4 3,3 8 11,3 

5,6 4,3 8,4 11,7 

5,8 5,1 8,8 11,8 

6 6,4 9,2 11,6 

 

A4.2. Products 

 

A5. Energy values for potential energy curves using the S-F distance as the reaction 
coordinate. Distances are in  and energies in kcal mol-1. 
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Potential energy curve built from reactives to products. 

d(S-F) Relative energy d(S-F) Relative energy 

1,592 0,0 1,790 -14,3 

1,650 1,0 1,800 -14,7 

1,700 3,5 1,900 -18,9 

1,750 6,8 2,000 -22,5 

1,760 7,6 2,100 -24,7 

1,770 8,3 2,200 -25,6 

1,780 9,1 2,245 -25,7 

 

Potential energy curve built from products to reactives. Shadowed values correspond to 
geometries in which the distance between the sulfur atom and the second fluorine atom 
closer to the vanadium was fixed to be 1.631 . 

d(S-F) Relative energy d(S-F) Relative energy 

1,650 -25,1 2,100 -24,7 

1,700 -25,6 2,200 -25,6 

1,710 -25,7 2,245 -25,7 

1,720 -25,7 1,550 1,5 

1,730 -25,6 1,575 0,8 

1,740 -25,6 1,600 0,8 

1,750 -12,6 1,650 4,6 

1,790 -14,3 1,675 1,9 

1,800 -14,7 1,700 -0,6 

1,900 -18,9 1,725 -3,0 

2,000 -22,5   

 

A6. Potential energy curve representing the bending angle  versus the relative energy, 
and the respective tabulated numerical values of the curve. Angle values are in degrees, 
and energies in kcal mol-1. 
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Bending angle  Relative energy 

180 0,0 

174 -0,1 

168 0,4 

162 1,6 

156 3,5 

150 6,4 

144 -25,5 

138 -24,7 

132 -21,0 

 

A.7. Illustration of the z-matrix used to build the potential energy surface, an 
explanation of its structural constraints and an example of z-matrix directly taken from 
an input. 

 

- r1
C-X and r2

C-X represent the distances between each of the carbon atoms of one ring 
and its centroid (where a dummy is located). All the C-X distances belonging to the 
same ring are imposed to be equal, to force the dummy to be in the center of the ring. A 
consequence is that cyclopentadienyls are forced to be regular pentagons. 

- The angle formed by each carbon atom, the dummy atom in the center of the ring and 
the vanadium atom is imposed to be of 90º. This restriction allows to properly control 
the relative inclination of the two Cp rings. 

-  and ’ are the two orthogonal angles that determine the overall relative inclination of 
the Cp rings. Their values are independent, and the variation of one of those angles does 
not affect the value of the other one, for that reason one of them is imposed to be of 90º, 
thus remaining the non-constrained angle as the unique coordinate that determines the 
bending of the Cp rings. Note that the bending angle (as it is defined in Fig. 3.5) 
corresponds to two times the value of angle  as it is depicted on the present z-matrix. In 
the z-matix, the upper and lower angle are defined by the same variable, which means 
that the vanadocene described by this matrix bends in a symmetrical fashion. 
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- r2 represents the distance between the fluorine atom that is to be transferred and the 
vanadium. r4 is the distance between the second fluorine atom closest to the vanadium 
and the vanadium atom itself. r3 is the distance between the sulfur atom and the 
vanadium atom. All three distances are well defined as explicit variables in the z-matrix. 
Specifically, r2 and r4 must be defined with respect to the vanadium atom since both of 
them need to be fixed in some or all the points of the surface. 

- r’V-F represent the distances between each of the remaining fluorine atoms and the 
vanadium atom. In most of the points of the surface, the fluorine atoms are defined in 
relation to the sulfur atom and the two dummies attached to it. However, in a few points 
(see Fig. 4.15) all the distances V-F are fixed to avoid an unwanted approach of a 
fluorine atom to the vanadium. In that particular case, the two dummies attached to the 
sulfur atom are useless. 

Z-matrix used to calculate the (3.5 , 180º) point of the potential energy surface. 

1 V        
2 X 1 1,0      
3 X 1 1,0 2 90,0    
4 X 1 B1 2 A1 3 90,0  
5 C 4 B2 1 90,0 2 D2 
6 C 4 B2 1 90,0 5 D3 
7 C 4 B2 1 90,0 5 D4 
8 C 4 B2 1 90,0 5 D5 
9 C 4 B2 1 90,0 5 D6 

B2 are the C-Xcentroid distances, all of them equivalent. The C-
Xcentroid-V angle is fixed to 90º. 

10 X 5 1,0 4 90,0 1 180,0  
11 X 6 1,0 4 90,0 1 180,0  
12 X 7 1,0 4 90,0 1 180,0  
13 X 8 1,0 4 90,0 1 180,0  
14 X 9 1,0 4 90,0 1 180,0  
15 H 5 B7 10 A7 4 D7  
16 H 6 B8 11 A8 4 D8  
17 H 7 B9 12 A9 4 D9  
18 H 8 B10 13 A10 4 D10  
19 H 9 B11 14 A11 4 D11  
20 X 1 B12 2 A1 3 -90,0  
21 C 20 B13 1 90,0 2 D13 
22 C 20 B13 1 90,0 21 D14 
23 C 20 B13 1 90,0 21 D15 
24 C 20 B13 1 90,0 21 D16 
25 C 20 B13 1 90,0 21 D17 

B13 are the C-Xcentroid distances of the second Cp ring and are 
also equivalent. The C-Xcentroid-V angle for this second ring is 
also fixed to 90º. 

26 X 21 1,0 20 90,0 1 180,0  
27 X 22 1,0 20 90,0 1 180,0  
28 X 23 1,0 20 90,0 1 180,0  
29 X 24 1,0 20 90,0 1 180,0  
30 X 25 1,0 20 90,0 1 180,0  
31 H 21 B18 26 A18 20 D18  
32 H 22 B19 27 A19 20 D19  
33 H 23 B20 28 A20 20 D20  
34 H 24 B21 29 A21 20 D21  
35 H 25 B22 30 A22 20 D22  
36 F 1 B23 4 A23 3 D23 The distance V-F is defined by B23 
37 S 1 B24 4 A24 3 D24  
38 X 37 1,0 1 90,0 4 D25  
39 X 37 1,0 38 90,0 1 D26  
40 F 37 B25 38 A25 39 D27  
41 F 1 B26 4 A26 3 D28 The distance V-F is defined by B26 
42 F 37 B27 39 A27 38 D29  
43 F 37 B28 39 A28 38 D30  
44 F 37 B29 38 A29 39 D31  
         
 B1 2,00       
 B2 1,25       
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 B7 1,10       
 B8 1,10       
 B9 1,10       
 B10 1,10       
 B11 1,10       
 B12 2,00       
 B13 1,25       
 B18 1,10       
 B19 1,10       
 B20 1,10       
 B21 1,10       
 B22 1,10       
 B24 4,43       
 B25 1,60       
 B27 1,60       
 B28 1,60       
 B29 1,60       
 A7 90,0       
 A8 90,0       
 A9 90,0       
 A10 90,0       
 A11 90,0       
 A18 90,0       
 A19 90,0       
 A20 90,0       
 A21 90,0       
 A22 90,0       
 A23 90,0       
 A24 90,0       
 A25 90,0       
 A26 90,0       
 A27 90,0       
 A28 90,0       
 A29 90,0       
 D2 180,0       
 D3 72,0       
 D4 144,0       
 D5 -144,0       
 D6 -72,0       
 D7 180,0       
 D8 180,0       
 D9 -180,0       
 D10 180,0       
 D11 180,0       
 D13 180,0       
 D14 72,0       
 D15 144,0       
 D16 -144,0       
 D17 -72,0       
 D18 180,0       
 D19 180,0       
 D20 180,0       
 D21 180,0       
 D22 180,0       
 D23 90,0       
 D24 72,0       
 D25 0,0       
 D26 90,0       
 D27 136,0       
 D28 50,6       
 D29 180,0       
 D30 0,0       
 D31 46,0       
 B26 3,5       
         
 B23 3,5 Fixed V-F distance  
 A1 90,0 Fixed Xcentroid-V-X angle  

 


