Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/102311
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCandotti, Michela-
dc.contributor.authorOrozco López, Modesto-
dc.date.accessioned2016-10-03T11:22:14Z-
dc.date.available2016-10-03T11:22:14Z-
dc.date.issued2016-07-29-
dc.identifier.issn1553-734X-
dc.identifier.urihttp://hdl.handle.net/2445/102311-
dc.description.abstractThe habitat in which proteins exert their function contains up to 400 g/L of macromolecules, most of which are proteins. The repercussions of this dense environment on protein behavior are often overlooked or addressed using synthetic agents such as poly(ethylene glycol), whose ability to mimic protein crowders has not been demonstrated. Here we performed a comprehensive atomistic molecular dynamic analysis of the effect of protein crowders on the structure and dynamics of three proteins, namely an intrinsically disordered protein (ACTR), a molten globule conformation (NCBD), and a one-fold structure (IRF-3) protein. We found that crowding does not stabilize the native compact structure, and, in fact, often prevents structural collapse. Poly(ethylene glycol) PEG500 failed to reproduce many aspects of the physiologically-relevant protein crowders, thus indicating its unsuitability to mimic the cell interior. Instead, the impact of protein crowding on the structure and dynamics of a protein depends on its degree of disorder and results from two competing effects: the excluded volume, which favors compact states, and quinary interactions, which favor extended conformers. Such a viscous environment slows down protein flexibility and restricts the conformational landscape, often biasing it towards bioactive conformations but hindering biologically relevant protein-protein contacts. Overall, the protein crowders used here act as unspecific chaperons that modulate the protein conformational space, thus having relevant consequences for disordered proteins.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pcbi.1005040-
dc.relation.ispartofPLoS Computational Biology, 2016, vol. 12, num. 7, p. e1005040-
dc.relation.urihttp://dx.doi.org/10.1371/journal.pcbi.1005040-
dc.rightscc-by (c) Candotti, Michela et al., 2016-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)-
dc.subject.classificationProteïnes-
dc.subject.classificationMacromolècules-
dc.subject.otherProteins-
dc.subject.otherMacromolecules-
dc.titleThe differential response of proteins to macromolecular crowding-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec663986-
dc.date.updated2016-10-03T11:22:19Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/675728/EU//BioExcel-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid27471851-
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
663986.pdf3.3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons