Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/102561
Title: Self-organization and cooperativity of cytoskeletal molecular motors
Author: Oriola Santandreu, David
Director/Tutor: Casademunt i Viader, Jaume
Keywords: Nanotecnologia
Citosquelet
Transport biològic
Nanotechnology
Cytoskeleton
Biological transport
Issue Date: 15-Jan-2016
Publisher: Universitat de Barcelona
Abstract: [eng] The present work deals with different aspects concerning the collective action of cytoskeletal molecular motors. The thesis is organized in two parts: the first part corresponds to the study of the cooperative action of molecular motors in intracellular transport, whereas the second part corresponds to the study of oscillatory dynamical instabilities driven by molecular motors. In the first part of the thesis, we carry out complete theoretical and experimental studies on the single-headed kinesin KIF1A, which constitutes a remarkable example of Brownian motor and a model motor to study intracellular transport. We provide a thorough numerical study of the collective action of single-headed KIF1A motors based on Brownian dynamics. We predict a dramatic improvement of the collective performance of these motors for tasks associated to the transport of membrane-bound cargoes. From a biological point of view, our results reinforce the hypothesis that the specificity of KIF1A to axonal vesicular trafficking is due to its unique adaptation to cooperative force generation. From a fundamental physics point of view, we show that Brownian motors based on two-state ratchets with independent switching and under unequal loading are remarkably adapted to cooperative force generation. We further test our predictions using a lattice model to study the dynamics of two interacting KIF1A motors. We show analytically the presence of cooperativity in the system and we consider a first extension of the problem to an arbitrary number of motors. Finally, we test our theoretical predictions experimentally, by using biomimetic tube pulling assays with single-headed KIF1A motors. We show that, despite the extreme inefficieny of the individual motors, they are able to cooperate collectively to extract membrane tubes, thus validating our theoretical predicitions. Additionally, we find the surprising formation of helical tubes around microtubules. This entails an impressive capability of single-headed KIF1A motors to exert significant off-axis by virtue of a diffusive state. Accordingly, this state affords two complementary strategies to overcome obstructions: brute force and manoeuvreing capability. In a series configuration (in line) it enables the generation of large forces by accumulation of motors, whereas in a parallel configuration (side by side) it enables lateral displacement of the cargo. In the second part of the thesis, we study the generation of dynamical instabilities driven by molecular motors. In particular, the spontaneous oscillations in a minimal in vitro actomyosin system and the self-organized flagellar beating driven by axonemal dynein. In the first case, we study theoretically an actomyosin system coupled to an elastic element, generating spontaneous oscillations in the presence of ATP via a Hopf bifurcation. This problem mimics the mechanism responsible of the asynchronous wing thrust observed in some insect species. We show that the theoretical model, based on an integro-differential system of equations, can be reduced to a simple three-dimensional ODE system. We find that both the complete and reduced systems exhibit subharmonic oscillations in some regimes. Remarkably, subharmonic peaks were reported experimentally in the signal power spectrum of a minimal in vitro actomyosin system. Hence, we provide an explanation for this phenomenon. In the second case, we study the nonlinear dynamics of axonemal beating driven by molecular motors. The explicit nonlinear equations for the flagellar shape and dynein kinetics are derived and solved numerically. Our analysis reveals the spatiotemporal dynamics of dynein kinetics and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. We find that far from the bifurcation, linearized solutions fail to describe the flagellar shape and nonlinear effects arise in the system solely due to motor activity. Finally, we further characterize flagellar dynamics using principal component analysis and studying bending initiation.
[cat] Els enormes progressos de les nanotecnologies durant les últimes dècades han permès un estudi quantitatiu dels fenòmens biològics fins arribar a l'escala d'una sola molècula. La possibilitat de visualitzar, manipular i mesurar fenòmens biològics a escala molecular obre un nou món per a la física, que pot aplicar els seus mètodes de modelització per a explicar i predir fenòmens abans inabastables des d'un punt de vista tecnològic. És en aquest marc on disciplines com ara la física estadística de no equilibri, la física no lineal o la ciència de materials tous conflueixen i juguen un paper clau. La complexitat dels sistemes biològics rau comunament en fenòmens col.lectius en situacions allunyades del equilibri, autoregulats mitjançant xarxes bioquímiques complexes les quals requereixen d'un alt grau d'autoorganització, la qual cosa implica tant fluxes de matèria i energia com d'informació. Tot i així, els nivells d'autoorganització i autoregulació involucrats en funcions cel.lulars tals com la motilitat i el tràfic intern, estan encara molt lluny d'una comprensió quantitativa satisfactòria des d'un punt de vista físic. Tals processos requereixen no només d'una visió qualitativa i descriptiva sinó també d'una perspectiva físico-matemàtica per a la seva completa comprensió. El present treball versa sobre l'estudi de l'acció col.lectiva de motors moleculars del citoesquelet, amb la finalitat de contribuir en la comprensió de la generació de força i moviment dins la cèl.lula. La tesi està estructurada en dues parts: la primera part correspon a l'estudi del transport intracel•lular degut a l'acció cooperativa de motors, en particular, l'estudi es centra en la kinesina monomèrica KIF1A, la qual constitueix un exemple notable de motor Brownià en el context biològic. En primer lloc es duu a terme un estudi teòric exhaustiu sobre l'acció col.lectiva d'aquests motors i posteriorment es validen experimentalment els resultats predits anteriorment mitjançant experiments d'extracció de tubs de membrana. En la segona part, s'estudia la generació d'inestabilitats dinàmiques degudes a l'acció cooperativa de motors moleculars. En particular, es tracten el casos d'oscil.lacions espontànees generades per un sistema in vitro d'actina i miosina, i el batec autoorganitzat de fagels degut a l'acció de dineïnes axonèmiques.
URI: https://hdl.handle.net/2445/102561
Appears in Collections:Tesis Doctorals - Departament - Estructura i Constituents de la Matèria

Files in This Item:
File Description SizeFormat 
DOS_THESIS.pdf27.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.