Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/103767
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIgual Muñoz, Laura-
dc.contributor.authorMoral Pérez, Juan Luis-
dc.date.accessioned2016-11-17T09:41:53Z-
dc.date.available2016-11-17T09:41:53Z-
dc.date.issued2016-01-21-
dc.identifier.urihttps://hdl.handle.net/2445/103767-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Laura Igual Muñozca
dc.description.abstractThis project is focused on the creation of a classification system that separates a group of subjects according to their gender based on data from magnetic resonance images (MRI) in a resting state. The images from MRI in a resting state are a tool to measure the brain connectivity or functioning that is currently being used for many neuroscience studies. This project, in particular, uses the representation of facts based on the Network in a resting state to characterize the functional connectivity of the subjects for the visualization of the obtained results. As well as evaluating the accuracy of the classification system developed, another objective of the project is to determine which of the cerebral networks are more discriminative in the task of separating men and women. The mothodology utilized combines two types of automatic learning: unsupervised learning, as in the Independent Componentes Analysis and the Principal Components Analysis, and supervised learning, as is the K-NN and SVM classifiers. The results obtained are promising, because it finds a RSN that discriminates both sex and we also note that the Principal Component Analysis does not affect when classifying .ca
dc.format.extent44 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isospaca
dc.rightsmemòria: cc-by-nc-sa (c) Juan Luis Moral Pérez, 2016-
dc.rightscodi: GPL (c) Juan Luis Moral Pérez, 2016-
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html-
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)cat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationImatges per ressonància magnèticaca
dc.subject.otherLearning classifier systemseng
dc.subject.otherMachine learningeng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherMagnetic resonance imagingeng
dc.titleEstudio de imágenes de resonancia magnética funcional en reposo para la predicción de variables personalesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria2.34 MBAdobe PDFView/Open
codi_font.zipCodi font20.36 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons