Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/10634
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarrido Fernández, Blascat
dc.contributor.authorGarcía Favrot, Cristinacat
dc.contributor.authorSeo, S.-Y.cat
dc.contributor.authorPellegrino, Paolocat
dc.contributor.authorNavarro Urrios, Danielcat
dc.contributor.authorDaldosso, Nicolacat
dc.contributor.authorPavesi, Lorenzocat
dc.contributor.authorGourbilleau, Fabricecat
dc.contributor.authorRizk, Richardcat
dc.date.accessioned2009-12-29T10:57:58Z-
dc.date.available2009-12-29T10:57:58Z-
dc.date.issued2007cat
dc.identifier.issn0163-1829cat
dc.identifier.urihttp://hdl.handle.net/2445/10634-
dc.description.abstractThis paper investigates the interaction between Si nanoclusters Si-nc and Er in SiO2, reports on the optical characterization and modeling of this system, and attempts to clarify its effectiveness as a gain material for optical waveguide amplifiers at 1.54 m. Silicon-rich silicon oxide layers with an Er content of 4–6 1020 at./cm3 were deposited by reactive magnetron sputtering. The films with Si excess of 6–7 at. %, and postannealed at 900 °C showed the best Er3+ photoluminescence PL intensity and lifetime, and were used for the study. The annealing duration was varied up to 60 min to engineer the size and density of Si-nc and optimize Si-nc and Er coupling. PL investigations under resonant 488 nm and nonresonant 476 nm pumping show that an Er effective excitation cross section is similar to that of Si-nc 10−17–10−16 cm2 at low pumping flux 1016–1017 cm−2 s−1, while it drops at high flux 1018 cm−2 s−1. We found a maximum fraction of excited Er of about 2% of the total Er content. This is far from the 50% needed for optical transparency and achievement of population inversion and gain. Detrimental phenomena that cause depletion of Er inversion, such as cooperative up conversion, excited-stated absorption, and Auger deexcitations are modeled, and their impact in lowering the amount of excitable Er is found to be relatively small. Instead, Auger-type short-range energy transfer from Si-nc to Er is found, with a characteristic interaction length of 0.4 nm. Based on such results, numerical and analytical Er as a quasi-two-level system coupled rate equations have been developed to determine the optimum conditions for Er inversion. The modeling predicts that interaction is quenched for high photon flux and that only a small fraction of Er 0.2–2 % is excitable through Si-nc. Hence, the low density of sensitizers Si-nc and the short range of the interaction are the explanation of the low fraction of Er coupled. Efficient ways to improve Er-doped Si-nc thin films for the realization of practical optical amplifiers are also discussed.-
dc.format.extent15 p.cat
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherThe American Physical Societycat
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevB.76.245308cat
dc.relation.ispartofPhysical Review B, 2007, vol. 76, núm. 24, p. 245308-1-245308-15cat
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevB.76.245308-
dc.rights(c) The American Physical Society, 2007cat
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationMaterials nanoestructuratscat
dc.subject.classificationPropietats òptiquescat
dc.subject.classificationMatèria condensadacat
dc.subject.otherCondensed mattereng
dc.subject.otherElectronic structure of bulk materialseng
dc.subject.otherOptical propertieseng
dc.titleExcitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusterseng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec564621cat
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
564621.pdf512.45 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.