Please use this identifier to cite or link to this item:
Title: A green light-triggerable RGD peptide for photocontrolled targeted drug delivery: synthesis and photolysis studies
Author: Gandioso, Albert
Cano, Marc
Massaguer i Vall-llovera, Anna
Marchán Sancho, Vicente
Keywords: Síntesi de pèptids
Cèl·lules canceroses
Síntesi orgànica
Peptide synthesis
Cancer cells
Organic synthesis
Issue Date: 9-Nov-2016
Publisher: American Chemical Society
Abstract: We describe for the first time the synthesis and photochemical properties of a coumarin-caged cyclic RGD peptide and demonstrate that uncaging can be efficiently performed with biologically compatible green light. This was accomplished by using a new dicyanocoumarin derivative (DEAdcCE) for the protection of the carboxyl function at the side chain of the aspartic acid residue, which was selected on the basis of Fmoc-tBu SPPS compatibility and photolysis efficiency. The shielding effect of a methyl group incorporated in the coumarin derivative near the ester bond linking both moieties in combination with the use of acidic additives such as HOBt or Oxyma during the basic Fmoc-removal treatment were found to be very effective for minimizing aspartimide-related side reactions. In addition, a conjugate between the dicyanocoumarin-caged cyclic RGD peptide and ruthenocene, which was selected as a metallodrug model cargo, has been synthesized and characterized. The fact that green-light triggered photoactivation can be efficiently performed both with the caged peptide and with its ruthenocenoyl bioconjugate reveals great potential for DEAdcCE-caged peptide sequences as selective drug carriers in the context of photocontrolled targeted anticancer strategies.
Note: Versió postprint del document publicat a:
It is part of: Journal of Organic Chemistry, 2016, vol. 81, num. 23, p. 11556-11564
Related resource:
ISSN: 0022-3263
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
667553.pdf798.8 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.