Carregant...
Fitxers
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/110322
Parameterization of invariant manifolds : the Lorenz manifold
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This work is composed of three different parts. First of all, a deep study of the Lorenz equations is done, beginning with its physical deduction, continuing with its dynamical properties and ending with the discussion of three typical properties of chaotic attractors (Volume contraction, Local instability and global stability and
how they are illustrated by the Lorenz system. The second part is based on Taylor’s method as a numerical integration method for the Lorenz differential equation system. The order of the expansion and the step size are the parameters to determine in order to have an error below a certain tolerance and a high computational
efficiency. The last part is the one which gives the title to this project. Once we have a deep understanding of the dynamical system and a way to integrate it we can proceed to find an approximation for the invariant stable manifold using the parameterization method. A general theorem for the analytic case is first introduced and then the method is adapted to the Lorenz model, and hence obtaining a plot of this manifold.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Àlex Haro
Citació
Col·leccions
Citació
ROMA GIMENO, Irene. Parameterization of invariant manifolds : the Lorenz manifold. [consulta: 14 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/110322]