Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/117730
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Clavería González, Óscar | - |
dc.contributor.author | Monte Moreno, Enric | - |
dc.contributor.author | Torra Porras, Salvador | - |
dc.date.accessioned | 2017-11-14T12:08:34Z | - |
dc.date.available | 2017-11-14T12:08:34Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | https://hdl.handle.net/2445/117730 | - |
dc.description.abstract | Machine learning (ML) methods are being increasingly used with forecasting purposes. This study assesses the predictive performance of several ML models in a multiple-input multiple-output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different neural network architectures in a multi-step-ahead time series prediction experiment. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation. | ca |
dc.format.extent | 22 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.publisher | Nova Science Publishers, Inc. | - |
dc.relation.ispartof | Capítol del llibre: “Machine Learning: Advances in Research and Applications”, ISBN: 978-1-53612-570-2 Editors: Roger Inge and Jan Leif, Nova Science Publishers, Inc. 2017. pp. 59-90 | - |
dc.rights | (c) Nova Science Publishers, Inc., 2017 | - |
dc.source | Llibres / Capítols de llibre (Econometria, Estadística i Economia Aplicada) | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Distribució de Gauss | - |
dc.subject.classification | Anàlisi de regressió | - |
dc.subject.classification | Previsió | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Gaussian distribution | - |
dc.subject.other | Regression analysis | - |
dc.subject.other | Forecasting | - |
dc.title | The appraisal of machine learning techniques for tourism demand forecasting [Capítol de llibre] | ca |
dc.type | info:eu-repo/semantics/bookPart | ca |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 304795 | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Llibres / Capítols de llibre (Econometria, Estadística i Economia Aplicada) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Book Machine Learning (2017) - Chapter 2 - pp 59-90 - postprint.pdf | 395.08 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.