Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/118860
Title: Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson's Disease Induced by MPTP
Author: Viveros-Paredes, Juan M.
González-Castañeda, Rocio E.
Gertsch, Juerg
Chaparro-Huerta, Veronica
López-Roa, Rocio I.
Vázquez-Valls, Eduardo
Beas Zárate, Carlos
Camins Espuny, Antoni
Flores-Soto, Mario E.
Keywords: Malaltia de Parkinson
Neurotoxines
Parkinson's disease
Neurotoxins
Issue Date: 6-Jul-2017
Publisher: MDPI
Abstract: Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.
Note: Reproducció del document publicat a: https://doi.org/10.3390/ph10030060
It is part of: Pharmaceuticals, 2017, vol. 10, num. 3, p. 60
URI: http://hdl.handle.net/2445/118860
Related resource: https://doi.org/10.3390/ph10030060
ISSN: 1424-8247
Appears in Collections:Articles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica)

Files in This Item:
File Description SizeFormat 
674581.pdf10.2 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons