Please use this identifier to cite or link to this item:
Title: Joint models for longitudinal counts and left-truncated time-to-event data with applications to health insurance
Author: Piulachs Lozada-Benavente, Xavier
Alemany Leira, Ramon
Guillén, Montserrat
Rizopoulos, Dimitris
Keywords: Risc (Assegurances)
Estadística matemàtica
Assegurances de malaltia
Avaluació de l'assistència mèdica
Anàlisi de dades de panel
Risk (Insurance)
Mathematical statistics
Health insurance
Medical care evaluation
Panel analysis
Issue Date: Dec-2017
Publisher: Institut d'Estadística de Catalunya
Abstract: Aging societies have given rise to important challenges in the field of health insurance. Elderly policyholders need to be provided with fair premiums based on their individual health status, whereas insurance companies want to plan for the potential costs of tackling lifetimes above mean expectations. In this article, we focus on a large cohort of policyholders in Barcelona (Spain), aged 65 years and over. A shared-parameter joint model is proposed to analyse the relationship between annual demand for emergency claims and time until death outcomes, which are subject to left truncation. We compare different functional forms of the association between both processes, and, furthermore, we illustrate how the fitted model provides time-dynamic predictions of survival probabilities. The parameter estimation is performed under the Bayesian framework using Markov chain Monte Carlo methods.
Note: Reproducció del document publicat a:
It is part of: Sort (Statistics and Operations Research Transactions), 2017, vol. 41, num. 2, p. 347-372
Related resource:
ISSN: 1696-2281
Appears in Collections:Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)

Files in This Item:
File Description SizeFormat 
675076.pdf788.57 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons