Please use this identifier to cite or link to this item:
Title: Rank-two vector bundles on non-minimal ruled surfaces
Author: Aprodu, Marian
Costa Farràs, Laura
Miró-Roig, Rosa M. (Rosa Maria)
Keywords: Superfícies (Matemàtica)
Geometria algebraica
Surfaces (Mathematics)
Algebraic geometry
Issue Date: 27-Dec-2017
Publisher: American Mathematical Society (AMS)
Abstract: We continue previous work by various authors and study the birational geometry of moduli spaces of stable rank-two vector bundles on surfaces with Kodaira dimension $ -\infty $. To this end, we express vector bundles as natural extensions by using two numerical invariants associated to vector bundles, similar to the invariants defined by Brînzănescu and Stoia in the case of minimal surfaces. We compute explicitly these natural extensions on blowups of general points on a minimal surface. In the case of rational surfaces, we prove that any irreducible component of a moduli space is either rational or stably rational.
Note: Reproducció del document publicat a:
It is part of: Transactions of the American Mathematical Society, 2017
Related resource:
ISSN: 0002-9947
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
668044.pdf252.62 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons