Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/120454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMundet i Riera, Ignasi-
dc.date.accessioned2018-03-05T15:09:35Z-
dc.date.available2018-03-05T15:09:35Z-
dc.date.issued2017-02-13-
dc.identifier.issn0002-9947-
dc.identifier.urihttps://hdl.handle.net/2445/120454-
dc.description.abstractFor any symplectic form $ \omega $ on $ T^2\times S^2$ we construct infinitely many nonisomorphic finite groups which admit effective smooth actions on $ T^2\times S^2$ that are trivial in cohomology but which do not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. We also prove that for any $ \omega $ there is another symplectic form $ \omega '$ on $ T^2\times S^2$ and a finite group acting symplectically and effectively on $ (T^2\times S^2,\omega ')$ which does not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. A basic ingredient in our arguments is the study of the Jordan property of the symplectomorphism groups of $ T^2\times S^2$. A group $ G$ is Jordan if there exists a constant $ C$ such that any finite subgroup $ \Gamma $ of $ G$ contains an abelian subgroup whose index in $ \Gamma $ is at most $ C$. Csikós, Pyber and Szabó proved recently that the diffeomorphism group of $ T^2\times S^2$ is not Jordan. We prove that, in contrast, for any symplectic form $ \omega $ on $ T^2\times S^2$ the group of symplectomorphisms $ \mathrm {Symp}(T^2\times S^2,\omega )$ is Jordan. We also give upper and lower bounds for the optimal value of the constant $ C$ in Jordan's property for $ \mathrm {Symp}(T^2\times S^2,\omega )$ depending on the cohomology class represented by $ \omega $. Our bounds are sharp for a large class of symplectic forms on $ T^2\times S^2$.-
dc.format.extent27 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Mathematical Society (AMS)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1090/tran/6978-
dc.relation.ispartofTransactions of the American Mathematical Society, 2017, vol. 369, num. 6, p. 4457-4483-
dc.relation.urihttps://doi.org/10.1090/tran/6978-
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationHomologia-
dc.subject.classificationGeometria algebraica-
dc.subject.otherHomology-
dc.subject.otherAlgebraic geometry-
dc.titleFinite groups acting symplectically on T^2 x S^2-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec670460-
dc.date.updated2018-03-05T15:09:35Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
670460.pdf372.87 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons