Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/121133| Title: | On the proof of the upper bound theorem |
| Author: | Dediu, Catalin |
| Director/Tutor: | Zarzuela, Santiago |
| Keywords: | Àlgebra commutativa Anells commutatius Treballs de fi de màster Geometria combinatòria Commutative algebra Commutative rings Master's theses Combinatorial geometry |
| Issue Date: | 9-Sep-2017 |
| Abstract: | [en] Let $\Delta$ be a triangulation of a $(d - 1)$-dimensional sphere with $n$ vertices. The Upper Bound Conjecture (UBC for short) gives an explicit bound of the number of $i$-dimensional faces of $\Delta$. This question dates back to the beginning of the 1950’s, when the study of the efficiency of some linear programming techniques led to the following problem: Determine the maximal possible number of $i$-faces of d-polytope with $n$ vertices. The first statement of the UBC was formulated in 1957 by Theodore Motzkin. The original result state that the number of $i$-dimensional faces of a $d$-dimensional polytope with n vertices are bound by a certain explicit number $f i (C(n, d))$ where $C(n, d)$ is a cyclic polytope and $f_{i}$ denotes the number of $i$-dimensional faces of the simplex. We say that $P$ is a polytope if it is the convex hull of a finite set of points in $\mathbb{R}^{d}$. Moreover, we say that $C(n, d)$ is a cyclic polytope if it is the convex hull of n distinct points on the moment curve $(t, t^{2},..., t{^d})$, $-\infty<t<\infty$. With this notation the Upper Bound Conjecture (for convex polytopes) states that cyclic polytope maximizes the number of $i$-dimensional faces among all polytopes. |
| Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2017, Director: Santiago Zarzuela |
| URI: | https://hdl.handle.net/2445/121133 |
| Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| memoria.pdf | Memòria | 829.89 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
