Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/121809
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJarque i Ribera, Xavier-
dc.contributor.advisorSardanyés Cayuela, Josep-
dc.contributor.authorColomer Armenteros, Raquel-
dc.date.accessioned2018-04-24T08:40:10Z-
dc.date.available2018-04-24T08:40:10Z-
dc.date.issued2017-06-28-
dc.identifier.urihttps://hdl.handle.net/2445/121809-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Xavier Jarque i Ribera i Josep Sardanyés Cayuelaca
dc.description.abstract[en] Continuous dynamical systems have been deeply studied since Newtonian mechanics appeared. For decades, qualitative dynamics of planar differential systems have been developed achieving a big number of results, relegating the study of infinity to a second place. On one hand, this Bachelor’s degree final project aims to examine in detail the behaviour of a vector field on a neighborhood of infinity. With this purpose, we will explain the Poincaré Compactification and use it to investigate the error threshold at infinity in the quasispecies model. On the other hand, we will focus on quasispecies theory, a biological theory widely studied in the context of the origin of life and RNA viruses. We will work on a viral quasispecies model, introducing a logistic constraint assumption that will let us analyze the error threshold in the finite plane. Under the logistic approach, the bifurcation we have characterized for the error threshold is a transcritical bifurcation. Finally, we will use numerical results to provide further insights on the dynamics and the bifurcations.ca
dc.format.extent77 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Raquel Colomer Armenteros, 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationCamps vectorials-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationEquacions diferencials ordinàriesca
dc.subject.classificationModels matemàticsca
dc.subject.classificationRNAca
dc.subject.classificationOrigen de la vidaca
dc.subject.otherVector fields-
dc.subject.otherBachelor's theses-
dc.subject.otherOrdinary differential equationsen
dc.subject.otherMathematical modelsen
dc.subject.otherRNAen
dc.subject.otherOrigin of lifeen
dc.titleExploring the error threshold through a Poincaré compactificationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria12.98 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons