Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/121867
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTravesa i Grau, Artur-
dc.contributor.authorCurcó Iranzo, Mar-
dc.date.accessioned2018-04-25T10:11:33Z-
dc.date.available2018-04-25T10:11:33Z-
dc.date.issued2017-06-29-
dc.identifier.urihttps://hdl.handle.net/2445/121867-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Artur Travesa i Grauca
dc.description.abstract[en] We start this thesis with a brief study on the Rieman-Roch Theorem so we can later introduce the concept of elliptic curve. We’ll proceed studying these as Weirstrass plane cubics and their reduction behaviour. Subsequently we’ll develop the construction of Frey’s curve and study some of its properties. Then, we give a short introduction to modular functions and Galois representation. Finally, we draw an outline for the proof of Fermat’s Theorem, where we can appreciate the importance of said curve. We conclude with an application of this method on other diofantic equations.ca
dc.format.extent62 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Mar Curcó Iranzo, 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationCorbes el·líptiques-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationSuperfícies cúbiquesca
dc.subject.classificationAnàlisi diofànticaca
dc.subject.classificationFuncions modularsca
dc.subject.otherElliptic curves-
dc.subject.otherBachelor's theses-
dc.subject.otherCubic surfacesen
dc.subject.otherDiophantine analysisen
dc.subject.otherModular functionsen
dc.titleLa corba de Frey: teoria i aplicacionsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.04 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons