Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/121893
Title: | Self-adjoint extensions for quantum physics |
Author: | Estévez Estudis, Joan |
Director/Tutor: | Mas Blesa, Albert |
Keywords: | Teoria d'operadors Treballs de fi de grau Espais de Sobolev Teoria quàntica Operator theory Bachelor's theses Sobolev spaces Quantum theory |
Issue Date: | 29-Jun-2017 |
Abstract: | [en] The main goal of this work is to provide techniques for finding self-adjoint extensions to unbounded operators, widely used in Quantum Physics. For that we use and study the Cayley method, concluding in the existance of a bijection between self-adjoint extensions and isometries between the deficiency subspaces of the Cayley transform. Using this knowledge we briefly parameterise the 1D, 2D and nD cases with possible self-adjoint extensions, and after introducing Sobolev spaces, we perform in more detail the search of self-adjoint extensions of the hamiltonian and laplacian operators. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Albert Mas Blesa |
URI: | http://hdl.handle.net/2445/121893 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoria.pdf | memòria | 235.18 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License