Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/122188
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarro, Mónica-
dc.contributor.authorNieva Boza, Claudia-
dc.contributor.authorJuan Capdevila, Anna de-
dc.contributor.authorSierra Jiménez, Àngels-
dc.date.accessioned2018-05-08T11:36:18Z-
dc.date.available2019-03-29T06:10:20Z-
dc.date.issued2018-03-28-
dc.identifier.issn0003-2700-
dc.identifier.urihttps://hdl.handle.net/2445/122188-
dc.description.abstractRaman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.-
dc.format.extent14 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.analchem.7b04527-
dc.relation.ispartofAnalytical Chemistry, 2018, vol. 90, num. 9, p. 5594-5602-
dc.relation.urihttps://doi.org/10.1021/acs.analchem.7b04527-
dc.rights(c) American Chemical Society , 2018-
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)-
dc.subject.classificationCàncer de mama-
dc.subject.classificationMetàstasi-
dc.subject.otherBreast cancer-
dc.subject.otherMetastasis-
dc.titleUnraveling the metabolic progression of breast cancer cells to bone metastasis by coupling Raman spectroscopy and a novel use of MCR-ALS algorithm-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec679620-
dc.date.updated2018-05-08T11:36:18Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/654148/EU//LASERLAB-EUROPE-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid29589914-
Appears in Collections:Articles publicats en revistes (Enginyeria Química i Química Analítica)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
679620.pdf1.68 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.