Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/123547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPontes, Bruno-
dc.contributor.authorMonzo, Pascale-
dc.contributor.authorGole, Laurent-
dc.contributor.authorLe Roux, Anabel-Lise-
dc.contributor.authorKosmalska, Anita Joanna-
dc.contributor.authorTam, Zhi Yang-
dc.contributor.authorLuo, Weiwei-
dc.contributor.authorKan, Sophie-
dc.contributor.authorViasnoff, Virgile-
dc.contributor.authorRoca-Cusachs Soulere, Pere-
dc.contributor.authorTucker-Kellogg, Lisa-
dc.contributor.authorGauthier, Nils C.-
dc.date.accessioned2018-07-13T08:03:31Z-
dc.date.available2018-07-13T08:03:31Z-
dc.date.issued2017-07-17-
dc.identifier.issn0021-9525-
dc.identifier.urihttp://hdl.handle.net/2445/123547-
dc.description.abstractCell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherRockefeller University Press-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1083/jcb.201611117-
dc.relation.ispartofJournal of Cell Biology, 2017, vol. 216, num. 9, p. 2959-2977-
dc.relation.urihttps://doi.org/10.1083/jcb.201611117-
dc.rightscc-by (c) Pontes, Bruno et al., 2017-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Biomedicina)-
dc.subject.classificationMembranes cel·lulars-
dc.subject.classificationProteïnes citosquelètiques-
dc.subject.classificationMotilitat cel·lular-
dc.subject.classificationMigració cel·lular-
dc.subject.classificationFisiologia animal-
dc.subject.classificationGenètica-
dc.subject.otherCell membranes-
dc.subject.otherCytoskeletal proteins-
dc.subject.otherCell motility-
dc.subject.otherCell migration-
dc.subject.otherAnimal physiology-
dc.subject.otherGenetics-
dc.titleMembrane tension controls adhesion positioning at the leading edge of cells-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec678499-
dc.date.updated2018-07-13T08:03:31Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731957/EU//MECHANO-CONTROL-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid28687667-
Appears in Collections:Articles publicats en revistes (Biomedicina)

Files in This Item:
File Description SizeFormat 
678499.pdf2.86 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons