Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/124216
Title: Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics
Author: Gumí Audenis, Berta
Costa, Luca
Ferrer Tasies, Lídia
Ratera, Imma
Ventosa, Nora
Sanz Carrasco, Fausto
Giannotti, Marina Ines
Keywords: Membranes lipídiques
Nanociència
Membranes cel·lulars
Lipid membranes
Nanoscience
Cell membranes
Issue Date: 11-Jul-2018
Publisher: Royal Society of Chemistry
Abstract: Cell processes like endocytosis, membrane resealing, signaling and transcription involve conformational changes which depend on the chemical composition and the physicochemical properties of the lipid membrane. The better understanding of the mechanical role of lipids in cell membrane force-triggered and sensing mechanisms has recently become the focus of attention. Different membrane models and experimental methodologies are commonly explored. While general approaches involve controlled vesicle deformation using micropipettes or optical tweezers, due to the local and dynamic nature of the membrane, high spatial resolution atomic force microscopy (AFM) has been widely used to study the mechanical compression and indentation of supported lipid bilayers (SLBs). However, the substrate contribution remains unkown. Here, we demonstrate how pulling lipid tubes with an AFM out of model SLBs can be used to assess the nanomechanics of SLBs through the evaluation of the tube growing force (Ftube), allowing for very local evaluation with high spatial and force resolution of the lipid membrane tension. We first validate this approach to determine the contribution of different phospholipids, by varying the membrane composition, in both one-component and phase-segregated membranes. Finally, we successfully assess the contribution of the underlying substrate to the membrane mechanics, demonstrating that SLB models may represent an intermediate scenario between a free membrane (blebs) and a cytoskeleton supported membrane.
Note: Reproducció del document publicat a: https://doi.org/10.1039/C8NR03249A
It is part of: Nanoscale, 2018, vol. 10, p. 14763-14770
URI: http://hdl.handle.net/2445/124216
Related resource: https://doi.org/10.1039/C8NR03249A
ISSN: 2040-3364
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
681289.pdf1.64 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons