Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/124871| Title: | Arithmetically Cohen-Macaulay bundles on cubic threefolds |
| Author: | Lahoz Vilalta, Martí Macrì, Emanuele Stellari, Paolo |
| Keywords: | Categories abelianes Geometria algebraica Abelian categories Algebraic geometry |
| Issue Date: | 2015 |
| Publisher: | Foundation Compositio Mathematica |
| Abstract: | We study arithmetically Cohen-Macaulay bundles on cubic threefolds by using derived category techniques. We prove that the moduli space of stable Ulrich bundles of any rank is always non-empty by showing that it is birational to a moduli space of semistable torsion sheaves on the projective plane endowed with the action of a Clifford algebra. We describe this birational isomorphism via wall-crossing in the space of Bridgeland stability conditions, in the example of instanton sheaves of minimal charge. |
| Note: | Reproducció del document publicat a: https://doi.org/10.14231/AG-2015-011 |
| It is part of: | Algebraic Geometry, 2015, vol. 2, num. 2, p. 231-269 |
| URI: | https://hdl.handle.net/2445/124871 |
| Related resource: | https://doi.org/10.14231/AG-2015-011 |
| ISSN: | 2214-2584 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 673684.pdf | 562.39 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
