Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/125084
Title: Machine learning per a l'anàlisi i classificació de sentiments
Author: Pons Gomila, Carlos
Director/Tutor: Pascual i Guinovart, Guillem
Keywords: Aprenentatge automàtic
Tractament del llenguatge natural (Informàtica)
Programari
Treballs de fi de grau
Allotjaments turístics
Conducta dels consumidors
Sistemes classificadors (Intel·ligència artificial)
Machine learning
Natural language processing (Computer science)
Computer software
Tourist accommodation
Consumer behavior
Bachelor's theses
Learning classifier systems
Issue Date: 22-Jun-2017
Abstract: [en] Continuously people debate and express their opinions in their day to day life. Internet has encouraged these opinions to be made public through social networks or review platforms regarding a brand, product or service. To analyze this intake of information, mining of opinions is gaining strength. A scraping system has been implemented to obtain a real data corpus and algorithms based on natural language processing (NLP) and Machine Learning are used to implement a sentiment analysis framework. By means of supervised learning, the reviews written at TripAdvisor regarding tourist accommodation are classified. A brief introduction to the world of neuronal networks is made and the Keras library is used in a regression problem to predict scores. Finally, the result of analyzing opinions applied to hotels in the city of Barcelona is presented on a web map, obtaining an indicator that represents the degree of positive or negative comments for each hotel.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Guillem Pascual Guinovart
URI: https://hdl.handle.net/2445/125084
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.89 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons