Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/125095| Title: | Numerical methods in classical mechanics: differential equations |
| Author: | Molins Marconi, Germán F. |
| Director/Tutor: | González-Miranda, J. M. (Jesús Manuel) |
| Keywords: | Mecànica Equacions diferencials Treballs de fi de grau Mechanics Differential equations Bachelor's theses |
| Issue Date: | Jun-2018 |
| Abstract: | A revision of different first order ODE numerical integration schemes is presented in the ambit of classical mechanics. Their performance is tested on a rescaled SHO, and their traits and effciency discussed. From these, an RK4 method is chosen to study a Duffng-Holmes oscillator. Its nonlinearity is shown to cause a period-doubling route to chaos through the exploration of a particular range of the forcing amplitude parameter using a bifurcation diagram |
| Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutor: Jesús M. González Miranda |
| URI: | https://hdl.handle.net/2445/125095 |
| Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Molins Marconi Germán Federico.pdf | 982.74 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
