Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/125267
Title: | Big data analysis applied to EEL spectroscopy |
Author: | Sospedra Ramírez, Joan |
Director/Tutor: | Estradé Albiol, Sònia Blanco Portals, Javier |
Keywords: | Espectroscòpia de pèrdua d'energia d'electrons Dades massives Treballs de fi de grau Electron energy loss spectroscopy Big data Bachelor's theses |
Issue Date: | Jun-2018 |
Abstract: | In order to characterize an unknown sample, big data and machine learning methods are proposed. An electron energy loss (EEL) spectrum image obtained in the transmission electron microscope is analyzed. Applying principal component analysis (PCA) to image EEL spectra, the noise present in the raw data can be discarded, and comparing with existing datasets and alternatively through clustering analysis, the presence of vanadium and oxygen in the sample over a substrate with lanthanum and oxygen can be recognized |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutors: Sonia Estradé Albiol, Javier Blanco Portals |
URI: | http://hdl.handle.net/2445/125267 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sospedra Ramírez Joan.pdf | 711.64 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License