Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/126455
Title: Histone Deacetylase Inhibitor Upregulates Peroxisomal Fatty Acid Oxidation And Inhibits Apoptotic Cell Death In Abcd1-deficient Glial Cells
Author: Singh, Jaspreet
Khan, Mushfiquddin
Pujol Onofre, Aurora
Baarine, Mauhamad
Singh, Inderjit
Keywords: Apoptosi
Astròcits
Apoptosis
Astrocytes
Issue Date: 26-Jul-2013
Publisher: Public Library of Science (PLoS)
Abstract: In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal beta-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of antiapoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.
Note: Reproducció del document publicat a: https://doi.org/10.1371/journal.pone.0070712
It is part of: PLoS One, 2013, vol. 8, num. 7, p. e70712
URI: http://hdl.handle.net/2445/126455
Related resource: https://doi.org/10.1371/journal.pone.0070712
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
SinghJ.pdf3.71 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons