Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/129363
Title: | PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen in vitro, ex vivo and in vivo characterization |
Author: | Sánchez-López, E. (Elena) Egea Gras, Ma. Antonia Cano Fernández, Amanda Espina García, Marta Calpena Campmany, Ana Cristina Ettcheto Arriola, Miren Camins Espuny, Antoni Souto, Eliana B. Silva, Amélia M. García, Maria Luisa |
Keywords: | Nanopartícules Farmacologia experimental Sistemes d'alliberament de medicaments Inflamació Nanoparticles Experimental pharmacology Drug delivery systems Inflammation |
Issue Date: | 30-Apr-2016 |
Publisher: | Elsevier B.V. |
Abstract: | Dexibuprofen-loaded PEGylated PLGA nanospheres have been developed to improve the biopharmaceuti-cal profile of the anti-inflammatory drug for ocular administration. Dexibuprofen is the active enantiomerof ibuprofen and therefore lower doses may be applied to achieve the same therapeutic level. Accordingto this, two batches of nanospheres of different drug concentrations, 0.5 and 1.0 mg/ml respectively, havebeen developed (the latter corresponding to the therapeutic ibuprofen concentration for inflammatoryeye diseases). Both batches were composed of negatively charged nanospheres (-−14.1 and -−15.9 mV),with a mean particle size below 200 nm, and a high encapsulation efficiency (99%). X-ray, FTIR, and DSCanalyses confirmed that the drug was dispersed inside the matrix of the nanospheres. While the in vitrorelease profile was sustained up to 12 h, the ex vivo corneal and scleral permeation profile demonstratedhigher drug retention and permeation in the corneal tissue rather than in the sclera. These results werealso confirmed by the quantification of dexibuprofen in ocular tissues after the in vivo administration ofdrug-loaded nanospheres. Cell viability studies confirmed that PEGylated-PLGA nanospheres were lesscytotoxic than free dexibuprofen in the majority of the tested concentrations. Ocular in vitro (HET-CAMtest) and in vivo (Draize test) tolerance assays demonstrated the non-irritant character of both nanospherebatches. In vivo anti-inflammatory effects were evaluated in albino rabbits before and after inflammationinduction. Both batches confirmed to be effective to treat and prevent ocular inflammation. Keywords: Nanospheres, Dexibuprofen, PLGA, PEG, Inflammation, Drug delivery |
Note: | Versió postprint del document publicat a: https://doi.org/10.1016/j.colsurfb.2016.04.054 |
It is part of: | Colloids and Surfaces B-Biointerfaces, 2016, vol. 145, p. 241-250 |
URI: | https://hdl.handle.net/2445/129363 |
Related resource: | https://doi.org/10.1016/j.colsurfb.2016.04.054 |
ISSN: | 0927-7765 |
Appears in Collections: | Articles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica) Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB)) Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
662149.pdf | 809.08 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License