Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/129823
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCerquides Bueno, Jesús-
dc.contributor.authorSánchez López, Borja-
dc.date.accessioned2019-03-06T11:32:41Z-
dc.date.available2019-03-06T11:32:41Z-
dc.date.issued2018-09-11-
dc.identifier.urihttps://hdl.handle.net/2445/129823-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Director: Jesús Cerquides Buenoca
dc.description.abstract[en] Function optimization is a widely faced problem nowadays. Its interest, in particular, lies in every learning algorithm in AI, whose achievements are measured by a Loss-Function. On one hand, Multinomial Logistic Regression is a commonly applied model to engage and simplify the problem of predicting a categorical distributed variable which depends on a set of distinct categorical distributed variables. On the other hand, Gradient Descent allows us to reach local extrema of a smooth function. Moreover, large datasets force the use of online optimization. Improving the convergence speed and reducing the computational cost of gradient based online learning algorithms will automatically translate into a significant enhancement on many machine learning processes. In this text, we present a Stochastic Gradient Descent algorithm variant, specifically designed for Multinomial Logistic Regression learning problems by taking advantage of the geometry and the intrinsic metric of the space. We compare it to current most advanced stochastic algorithms, and we provide the favorable experimental results obtained.ca
dc.format.extent55 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Borja Sánchez López, 2018-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationAlgorismes computacionalscat
dc.subject.classificationOptimització matemàticacat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationFuncions convexesca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationGeometria de Riemannca
dc.subject.classificationAproximació estocàsticaca
dc.subject.otherComputer algorithmseng
dc.subject.otherMathematical optimizationeng
dc.subject.otherMaster's theseseng
dc.subject.otherConvex functionsen
dc.subject.otherMachine learningen
dc.subject.otherRiemannian geometryen
dc.subject.otherStochastic approximationen
dc.titleMultinomial logistic regression and stochastic natural gradient descentca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.08 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons