Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/132417
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJornet Somoza, Joaquim-
dc.contributor.authorDeumal i Solé, Mercè-
dc.contributor.authorBorge, Juan-
dc.contributor.authorRobb, Michael A.-
dc.date.accessioned2019-04-25T13:03:21Z-
dc.date.available2019-07-12T05:10:20Z-
dc.date.issued2018-07-12-
dc.identifier.issn1089-5639-
dc.identifier.urihttp://hdl.handle.net/2445/132417-
dc.description.abstractMacroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature TC for magnetic systems is associated with a maximum in the energy-based heat capacity Cp(T). Here a more broadly applicable definition of the magnetic transition temperature TC is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity Cs(T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity Cs(T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity Cp(T). Differences between Cs(T) and Cp(T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with Cs(T) and Cp(T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity Cs(T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jpca.7b10657-
dc.relation.ispartofJournal of Physical Chemistry A, 2018, vol. 122, num. 8, p. 2168-2177-
dc.relation.urihttps://doi.org/10.1021/acs.jpca.7b10657-
dc.rights(c) American Chemical Society , 2018-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationPropietats magnètiques-
dc.subject.classificationValència (Química teòrica)-
dc.subject.otherMagnetic properties-
dc.subject.otherValence (Theoretical chemistry)-
dc.titleA Definition of the Magnetic Transition Temperature Using Valence Bond Theory-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec684490-
dc.date.updated2019-04-25T13:03:21Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/703195/EU//SOCISS-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/267374/EU//DYNAMO-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
684490.pdf781.32 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.