Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/133450
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAngulo Urarte, Ana-
dc.contributor.authorCasado, Pedro-
dc.contributor.authorCastillo, Sandra D.-
dc.contributor.authorKobialka, Piotr-
dc.contributor.authorKotini, Maria Paraskevi-
dc.contributor.authorFigueiredo, Ana Raquel Martins-
dc.contributor.authorCastel Morales, Pau-
dc.contributor.authorRajeeve, Vinothini-
dc.contributor.authorMilà Guasch, Maria-
dc.contributor.authorMillán, Jaime-
dc.contributor.authorWiesner, Cora-
dc.contributor.authorSerra, Helena-
dc.contributor.authorMuixi, Laura-
dc.contributor.authorCasanovas i Casanovas, Oriol-
dc.contributor.authorViñals Canals, Francesc-
dc.contributor.authorAffolter, Markus-
dc.contributor.authorGerhardt, Holger-
dc.contributor.authorHuveneers, Stephan-
dc.contributor.authorBelting, Heinz-Georg-
dc.contributor.authorCutillas, Pedro R.-
dc.contributor.authorGraupera i Garcia-Milà, Mariona-
dc.date.accessioned2019-05-20T11:53:40Z-
dc.date.available2019-05-20T11:53:40Z-
dc.date.issued2018-11-16-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/2445/133450-
dc.description.abstractAngiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-018-07172-3-
dc.relation.ispartofNature Communications, 2018, vol. 9, num. 1, p. 4826-
dc.relation.urihttps://doi.org/10.1038/s41467-018-07172-3-
dc.rightscc-by (c) Angulo Urarte, Ana et al., 2018-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)-
dc.subject.classificationProteïnes quinases-
dc.subject.classificationAngiogènesi-
dc.subject.classificationRegulació genètica-
dc.subject.classificationExpressió gènica-
dc.subject.otherProtein kinases-
dc.subject.otherNeovascularization-
dc.subject.otherGenetic regulation-
dc.subject.otherGene expression-
dc.titleEndothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec687069-
dc.date.updated2019-05-20T11:53:40Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/675392/EU//Phd-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/749731/EU//PI3K-VAs-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid30446640-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
687069.pdf7.99 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons