Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/133457
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Seguí Mesquida, Santi | - |
dc.contributor.advisor | Vitrià i Marca, Jordi | - |
dc.contributor.author | Beltrán Segarra, Marc | - |
dc.contributor.author | Companys Rufián, Albert | - |
dc.date.accessioned | 2019-05-20T08:15:55Z | - |
dc.date.available | 2019-05-20T08:15:55Z | - |
dc.date.issued | 2018-07-03 | - |
dc.identifier.uri | https://hdl.handle.net/2445/133457 | - |
dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Santi Seguí Mesquida i Jordi Vitrià i Marca | ca |
dc.description.abstract | [en] A great amount of the interesting information captured by aerial imagery is still not being used given how labour intensive the processing and annotation of these images is. Despite this, improvements in technology and advancements in the computer vision field have made available tools and techniques that can help make this process semi-automatized. In this project we focus on the use case of extracting roads from aerial imagery. For this purpose, we will study and compare models based on image segmentation using deep learning and RoadTracer, a revolutionary model proposed recently. | ca |
dc.format.extent | 67 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Marc Beltrán Segarra i Albert companys Rufián, 2018 | - |
dc.rights | codi: GPL (c) Marc Beltrán Segarra i Albert companys Rufián, 2018, 2018 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.rights.uri | http://www.gnu.org/licenses/gpl-3.0.ca.html | - |
dc.source | Màster Oficial - Fonaments de la Ciència de Dades | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Serveis de geolocalització | - |
dc.subject.classification | Treballs de fi de màster | - |
dc.subject.classification | Fotografia aèria | ca |
dc.subject.classification | Processament digital d'imatges | ca |
dc.subject.classification | Xarxes neuronals (Informàtica) | ca |
dc.subject.other | Machine learning | - |
dc.subject.other | Location-based services | - |
dc.subject.other | Master's theses | - |
dc.subject.other | Aerial photography | en |
dc.subject.other | Digital image processing | en |
dc.subject.other | Neural networks (Computer science) | en |
dc.title | Using deep learning and Open Street Maps to find features in aerial images | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Programari - Treballs de l'alumnat Màster Oficial - Fonaments de la Ciència de Dades |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoria.pdf | Memòria | 19.91 MB | Adobe PDF | View/Open |
codi_font.zip | Codi font | 672.79 kB | zip | View/Open |
This item is licensed under a
Creative Commons License