Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/133457
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSeguí Mesquida, Santi-
dc.contributor.advisorVitrià i Marca, Jordi-
dc.contributor.authorBeltrán Segarra, Marc-
dc.contributor.authorCompanys Rufián, Albert-
dc.date.accessioned2019-05-20T08:15:55Z-
dc.date.available2019-05-20T08:15:55Z-
dc.date.issued2018-07-03-
dc.identifier.urihttps://hdl.handle.net/2445/133457-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Santi Seguí Mesquida i Jordi Vitrià i Marcaca
dc.description.abstract[en] A great amount of the interesting information captured by aerial imagery is still not being used given how labour intensive the processing and annotation of these images is. Despite this, improvements in technology and advancements in the computer vision field have made available tools and techniques that can help make this process semi-automatized. In this project we focus on the use case of extracting roads from aerial imagery. For this purpose, we will study and compare models based on image segmentation using deep learning and RoadTracer, a revolutionary model proposed recently.ca
dc.format.extent67 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Marc Beltrán Segarra i Albert companys Rufián, 2018-
dc.rightscodi: GPL (c) Marc Beltrán Segarra i Albert companys Rufián, 2018, 2018-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html-
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationServeis de geolocalització-
dc.subject.classificationTreballs de fi de màster-
dc.subject.classificationFotografia aèriaca
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.otherMachine learning-
dc.subject.otherLocation-based services-
dc.subject.otherMaster's theses-
dc.subject.otherAerial photographyen
dc.subject.otherDigital image processingen
dc.subject.otherNeural networks (Computer science)en
dc.titleUsing deep learning and Open Street Maps to find features in aerial imagesca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria19.91 MBAdobe PDFView/Open
codi_font.zipCodi font672.79 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons