Please use this identifier to cite or link to this item:
Title: New synthetic strategies for the synthesis of multifunctional peptidic platforms with osteoinductive potential
Other Titles: Noves estratègies sintètiques per la síntesi de plataformes peptídiques multifuncionals amb potencial osteoinductiu
Author: Sánchez Campillo, Iván
Director/Tutor: Marchán Sancho, Vicente
Mas Moruno, Carlos
Martín Gómez, Helena
Keywords: Síntesi de pèptids
Materials biomèdics
Síntesi en fase sólida
Treballs de fi de grau
Peptide synthesis
Biomedical materials
Solid-phase synthesis
Bachelor's theses
Issue Date: Jun-2019
Abstract: In biomaterials science, peptides are widely used to functionalize material surfaces and confer biological potential (i.e. bioactivity) to otherwise inert substrates. The attachment of biomolecules to material surfaces is commonly achieved by using specific anchors with chemical affinity for the substrates. Well-known examples include the use of amines to bind polymers through amide bonds, thiols to bind gold substrates or catechol groups to bind titanium and other metallic oxides. However, this implies that each synthesized peptide can be used only for a narrow range of materials. Thus, in most cases, changing the material of study requires synthesizing the same peptide with a distinct anchor, resulting in time-consuming and repetitive procedures. To solve this, this project aims to develop a novel and versatile click-based solid-phase synthetic strategy to prepare peptidic coatings for a variety of biomaterials. In detail, the project focuses on the solid-phase peptide synthesis of a branched peptidic structure (containing the RGD and DWIVA peptide sequences) and the optimization of the copper-catalysed azide-alkyne cycloaddition reaction to introduce three anchoring groups, namely an amine, a thiol and a catechol, to the peptidic backbone in solid phase. By means of solid-phase synthetic methods and characterization by analytical HPLC and mass spectrometry, the feasibility of this strategy has been demonstrated. It is expected this new method will find applications to coat a wide range of biomaterials in a straightforward and cost-efficient fashion.
Note: Treballs Finals de Grau de Química, Facultat de Química, Universitat de Barcelona, Any: 2019, Tutors: Vicente Marchán Sancho, Carles Mas Moruno, Helena Martín Gómez
Appears in Collections:Treballs Finals de Grau (TFG) - Química

Files in This Item:
File Description SizeFormat 
TFG_QU Sánchez Campillo, Iván.pdf1.73 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons