Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/138987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalandrino, Andrea-
dc.contributor.authorTrepat Guixer, Xavier-
dc.contributor.authorKamm, Roger D.-
dc.contributor.authorMak, Michael-
dc.date.accessioned2019-09-02T10:50:44Z-
dc.date.available2019-09-02T10:50:44Z-
dc.date.issued2019-04-08-
dc.identifier.urihttp://hdl.handle.net/2445/138987-
dc.description.abstractThe mechanical properties of the extracellular matrix (ECM)–a complex, 3D, fibrillar scaffold of cells in physiological environments–modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs–collagen I and fibrin–in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.ca
dc.format.extent26 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pcbi.1006684-
dc.relation.ispartofPLOS Computational Biology, 2019, vol. 15, num. 4, p. e1006684-
dc.relation.urihttps://doi.org/10.1371/journal.pcbi.1006684-
dc.rightscc by (c) Malandrino et al., 2019-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Biomedicina)-
dc.subject.classificationCol·lagen-
dc.subject.classificationCitologia-
dc.subject.classificationMatriu extracel·lular-
dc.subject.otherCollagen-
dc.subject.otherCytology-
dc.subject.otherExtracellular matrix-
dc.titleDynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matricesca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec692170-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/616480/EU//TensionControlca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Articles publicats en revistes (Biomedicina)
Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
692170.pdf3.57 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons