Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/139434
Title: | Predicting Motor Insurance Claims Using Telematics Data XGBoost versus Logistic Regression |
Author: | Pesántez-Narváez, Jessica Guillén, Montserrat Alcañiz, Manuela |
Keywords: | Risc (Assegurances) Risc (Economia) Assegurances d'automòbils Anàlisi de regressió Algorismes Risk (Insurance) Risk Automobile insurance Regression analysis Algorithms |
Issue Date: | Jun-2019 |
Publisher: | MDPI |
Abstract: | XGBoost is recognized as an algorithm with exceptional predictive capacity. Models for a binary response indicating the existence of accident claims versus no claims can be used to identify the determinants of traffic accidents. This study compared the relative performances of logistic regression and XGBoost approaches for predicting the existence of accident claims using telematics data. The dataset contained information from an insurance company about the individuals' driving patterns¿including total annual distance driven and percentage of total distance driven in urban areas. Our findings showed that logistic regression is a suitable model given its interpretability and good predictive capacity. XGBoost requires numerous model-tuning procedures to match the predictive performance of the logistic regression model and greater effort as regards to interpretation. |
Note: | Reproducció del document publicat a: https://doi.org/10.3390/risks7020070 |
It is part of: | Risks, 2019, vol. 7(2), num. 70, p. 1-16 |
URI: | http://hdl.handle.net/2445/139434 |
Related resource: | https://doi.org/10.3390/risks7020070 |
ISSN: | 2227-9091 |
Appears in Collections: | Articles publicats en revistes (Econometria, Estadística i Economia Aplicada) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
690925.pdf | 2.39 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License