Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/140318
Title: | Variational Quantum Classifier |
Author: | Gil Fuster, Elies M. |
Director/Tutor: | Latorre, José Ignacio |
Keywords: | Xarxes neuronals (Informàtica) Ordinadors quàntics Treballs de fi de grau Neural networks (Computer science) Quantum computers Bachelor's theses |
Issue Date: | Jan-2019 |
Abstract: | In this work we propose a quantum alternative to Artificial Neural Networks in classification tasks. We design a set of different neural networks and quantum circuits and test their performances. We found that a Variational Quantum Classifier can outperform a classical model using far less free parameters and, thus, being more eficient. Further, a complex classification task requires deeper quantum circuits, which nevertheless grow at a slower pace than the number of neurons needed in a Neural Network for the same task. |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2019, Tutor: José Ignacio Latorre |
URI: | https://hdl.handle.net/2445/140318 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
GIL FUSTER Elies Miquel.pdf | 316.85 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License