Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/140505
Title: | Cohomologia de varietats i càlcul d’índexs |
Author: | Picazo Archilla, Àngel |
Director/Tutor: | Casacuberta, Carles |
Keywords: | Homologia Treballs de fi de grau Varietats de Riemann Laplacià Operadors diferencials Homology Bachelor's theses Riemannian manifolds Laplacian operator Differential operators Topologia diferencial Differential topology |
Issue Date: | 18-Jan-2019 |
Abstract: | [en] The index calculation that we study is a special case of the Atiyah–Singer theorem, which relates a topological index with an analytical index. By using cohomology in manifolds we state the de Rham theorem, define orientations, and relate the signature of a manifold with characteristic classes by means of a theorem due to Hirzebruch. In the main part of the work, we prove that the signature of a Riemannian manifold is equal to the index of a differential operator closely related with the Hodge Laplacian. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Carles Casacuberta |
URI: | https://hdl.handle.net/2445/140505 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFG Cohomologia de varietats i càlcul díndexs.pdf | Memòria | 948.79 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License