Please use this identifier to cite or link to this item:
                
    
    https://hdl.handle.net/2445/140505| Title: | Cohomologia de varietats i càlcul d’índexs | 
| Author: | Picazo Archilla, Àngel | 
| Director/Tutor: | Casacuberta, Carles | 
| Keywords: | Homologia Treballs de fi de grau Varietats de Riemann Laplacià Operadors diferencials Homology Bachelor's theses Riemannian manifolds Laplacian operator Differential operators Topologia diferencial Differential topology  | 
| Issue Date: | 18-Jan-2019 | 
| Abstract: | [en] The index calculation that we study is a special case of the Atiyah–Singer theorem, which relates a topological index with an analytical index. By using cohomology in manifolds we state the de Rham theorem, define orientations, and relate the signature of a manifold with characteristic classes by means of a theorem due to Hirzebruch. In the main part of the work, we prove that the signature of a Riemannian manifold is equal to the index of a differential operator closely related with the Hodge Laplacian. | 
| Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Carles Casacuberta | 
| URI: | https://hdl.handle.net/2445/140505 | 
| Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| TFG Cohomologia de varietats i càlcul díndexs.pdf | Memòria | 948.79 kB | Adobe PDF | View/Open | 
    This item is licensed under a
    Creative Commons License
	
	
	