Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/141217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWelz, Patrick-Simon-
dc.contributor.authorZinna, Valentina M.-
dc.contributor.authorSymeonidi, Aikaterini-
dc.contributor.authorKoronowski, Kevin B.-
dc.contributor.authorKinouchi, Kenichiro-
dc.contributor.authorSmith, Jacob G.-
dc.contributor.authorMarín Guillén, Inés-
dc.contributor.authorCastellanos, Andrés-
dc.contributor.authorFurrow, Stephen-
dc.contributor.authorAragón, Ferrán-
dc.contributor.authorCrainiciuc, Georgiana-
dc.contributor.authorPrats, Neus-
dc.contributor.authorMartín Caballero, Juan-
dc.contributor.authorHidalgo, Andrés-
dc.contributor.authorSassone-Corsi, Paolo-
dc.contributor.authorAznar Benitah, Salvador-
dc.date.accessioned2019-09-30T07:54:13Z-
dc.date.available2020-05-30T05:10:27Z-
dc.date.issued2019-05-30-
dc.identifier.urihttp://hdl.handle.net/2445/141217-
dc.description.abstractCircadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to “remember” time in the absence of external cues.-
dc.format.extent26 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.cell.2019.05.009-
dc.relation.ispartofCell, 2019, vol. 177, num. 6, p. 1436-1447-
dc.relation.urihttp://dx.doi.org/10.1016/j.cell.2019.05.009-
dc.rightscc by-nc-nd (c) Welz et al., 2019-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))-
dc.subject.classificationRitmes circadiaris-
dc.subject.classificationFisiologia-
dc.subject.otherCircadian rhythms-
dc.subject.otherPhysiology-
dc.titleBMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.date.updated2019-09-16T13:35:42Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/713673/EU//INPhINIT-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid31150620-
dc.identifier.pmid31398328-
Appears in Collections:Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
BMAL1-Driven.pdf6.97 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons