Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/142071
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurillo, Gonzalo-
dc.contributor.authorLeón-Salguero, Edgardo-
dc.contributor.authorMartínez-Alanis, Paulina R.-
dc.contributor.authorEsteve Tintó, Jaume-
dc.contributor.authorAlvarado-Rivera, Josefina-
dc.contributor.authorGüell Vilà, Frank-
dc.date.accessioned2019-10-10T11:44:50Z-
dc.date.available2021-04-06T05:10:18Z-
dc.date.issued2019-04-06-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/2445/142071-
dc.description.abstractThis work reports the study of the processes behind the growth of two-dimensional (2D) n-doped ZnO nanostructures on an AlN layer. We have demonstrated that AlN undergoes a slow dissociation process due to the basic controlled environment promoted by the hexamethylenetetramine (HMTA). The Al(OH)4- ions created inhibits the growth along the c-axis, effectively promoting the fast formation of a planar geometry selectively grown on top of the AlN layer. With the use of this promoting layer and a standard hydrothermal method, a selective area growth is observed with micrometric resolution. In addition, by using several advanced characterization techniques such as, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS/EDX), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL), we observed a resulting doping with aluminum of the ZnO nanostructures, occupying substitutional and interstitial sites, that could lead to new promising applications. These high-quality n-doped ZnO nanosheets (NSs) exhibit strong ultraviolet emission in the 385-405 nm region without broad deep level emission. The piezoelectric nature of these nanostructures has been demonstrated by using piezoresponse atomic force microscope (PFM) and with the support of a piezoelectric test device. Therefore, this low-cost and fast selective-area synthesis of 2D n-doped ZnO NSs can be applicable to other aluminum based materials and paves the way to new promising applications, such as bioelectronic applications, energy generation or self-powered sensing-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.nanoen.2019.04.017-
dc.relation.ispartofNano Energy, 2019, vol. 60, p. 817-826-
dc.relation.urihttps://doi.org/10.1016/j.nanoen.2019.04.017-
dc.rightscc-by-nc-nd (c) Elsevier, 2019-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationAlumini-
dc.subject.classificationÒxid de zinc-
dc.subject.classificationNanocristalls-
dc.subject.otherAluminum-
dc.subject.otherZinc oxide-
dc.subject.otherNanocrystals-
dc.titleRole of aluminum and HMTA in the hydrothermal synthesis of two-dimensional n-doped ZnO nanosheets-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec691973-
dc.date.updated2019-10-10T11:44:50Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/692482/EU//EnSO-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
691973.pdf8.58 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons