Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/143528
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurgués, Javier-
dc.contributor.authorMarco Colás, Santiago-
dc.date.accessioned2019-10-30T13:59:00Z-
dc.date.available2019-10-30T13:59:00Z-
dc.date.issued2019-09-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/2445/143528-
dc.description.abstractThe intermittency of the instantaneous concentration of a turbulent chemical plume is a fundamental cue for estimating the chemical source distance using chemical sensors. Such estimate is useful in applications such as environmental monitoring or localization of fugitive gas emissions by mobile robots or sensor networks. However, the inherent low-pass filtering of metal oxide (MOX) gas sensors typically used in odor-guided robots and dense sensor networks due to their low cost, weight and size hinders the quantification of concentration intermittency. In this paper, we design a digital differentiator to invert the low-pass dynamics of the sensor response, thus obtaining a much faster signal from which the concentration intermittency can be effectively computed. Using a fast photo-ionization detector as a reference instrument, we demonstrate that the filtered signal is a good approximation of the instantaneous concentration in a real turbulent plume. We then extract transient features from the filtered signal the so-called ''bouts'' to predict the chemical source distance, focusing on the optimization of the filter parameters and the noise threshold to make the predictions robust against changing wind conditions. This represents an advantage over previous bout-based models which require wind measurements typically taken with expensive and bulky anemometers to produce accurate predictions. The proposed methodology is demonstrated in a wind tunnel scenario where a MOX sensor is placed at various distances downwind of an emitting chemical source and the wind speed varies in the range 10-34 cm/s. The results demonstrate that models optimized with our methodology can provide accurate source distance predictions at different wind speeds.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/ACCESS.2019.2940936-
dc.relation.ispartofIEEE Access, 2019, vol. 7, p. 140461-140469-
dc.relation.urihttps://doi.org/10.1109/ACCESS.2019.2940936-
dc.rightscc-by (c) Burgués Calderón, Javier et al., 2019-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationDetectors de gasos-
dc.subject.classificationProcessament de senyals-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationAnàlisi de sèries temporals-
dc.subject.otherGas detectors-
dc.subject.otherSignal processing-
dc.subject.otherMachine learning-
dc.subject.otherTime-series analysis-
dc.titleWind-independent estimation of gas source distance from transient features of metal oxide sensor signals-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec691711-
dc.date.updated2019-10-30T13:59:00Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
691711.pdf2.68 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons