Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/144240
Title: | On the classification of Togliatti systems |
Author: | Miró-Roig, Rosa M. (Rosa Maria) Salat Moltó, Martí |
Keywords: | Geometria diferencial Equacions en derivades parcials Differential geometry Partial differential equations |
Issue Date: | 2018 |
Publisher: | Taylor and Francis |
Abstract: | In [MeMR], Mezzetti and Mir\'{o}-Roig proved that the minimal number of generators μ(I) of a minimal (smooth) monomial Togliatti system I⊂k[x0,¿,xn] satisfies 2n+1≤μ(I)≤(n+d−1n−1) and they classify all smooth minimal monomial Togliatti systems I⊂k[x0,¿,xn] with 2n+1≤μ(I)≤2n+2. In this paper, we address the first open case. We classify all smooth monomial Togliatti systems I⊂k[x0,¿,xn] of forms of degree d≥4 with μ(I)=2n+3 and n≥2 and all monomial Togliatti systems I⊂k[x0,x1,x2] of forms of degree d≥6 with μ(I)=7. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1080/00927872.2017.1388813 |
It is part of: | Communications in Algebra, 2018, vol. 46, num. 6, p. 2459-2475 |
URI: | http://hdl.handle.net/2445/144240 |
Related resource: | https://doi.org/10.1080/00927872.2017.1388813 |
ISSN: | 0092-7872 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
677063.pdf | 505.76 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.