Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/149442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAttems, Maximilian-
dc.contributor.authorBea, Yago-
dc.contributor.authorCasalderrey Solana, Jorge-
dc.contributor.authorMateos, David (Mateos Solé)-
dc.contributor.authorZilhão, Miguel-
dc.date.accessioned2020-02-05T13:22:04Z-
dc.date.available2020-02-05T13:22:04Z-
dc.date.issued2020-01-17-
dc.identifier.issn1126-6708-
dc.identifier.urihttps://hdl.handle.net/2445/149442-
dc.description.abstractWe use holography to develop a physical picture of the real-time evolution of the spinodal instability of a four-dimensional, strongly-coupled gauge theory with a first-order, thermal phase transition. We numerically solve Einstein's equations to follow the evolution, in which we identify four generic stages: a first, linear stage in which the instability grows exponentially; a second, non-linear stage in which peaks and/or phase domains are formed; a third stage in which these structures merge; and a fourth stage in which the system finally relaxes to a static, phase-separated configuration. On the gravity side the latter is described by a static, stable, inhomogeneous horizon. We conjecture and provide evidence that all static, non-phase separated configurations in large enough boxes are dynamically unstable. We show that all four stages are well described by the constitutive relations of second-order hydrodynamics that include all second-order gradients that are purely spatial in the local rest frame. In contrast, a Müller-Israel-Stewart-type formulation of hydrodynamics fails to provide a good description for two reasons. First, it misses some large, purely-spatial gradient corrections. Second, several second-order transport coefficients in this formulation, including the relaxation times τπ and τΠ, diverge at the points where the speed of sound vanishes.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/JHEP01(2020)106-
dc.relation.ispartofJournal of High Energy Physics, 2020, num. 106-
dc.relation.urihttps://doi.org/10.1007/JHEP01(2020)106-
dc.rightscc-by (c) Attems, Maximilian et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationHolografia-
dc.subject.classificationCamps de galga (Física)-
dc.subject.otherHolography-
dc.subject.otherGauge fields (Physics)-
dc.titleDynamics of phase separation from holography-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec695125-
dc.date.updated2020-02-05T13:22:05Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/730897/EU//HPC-EUROPA3-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/658574/EU//FastTh-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
695125.pdf3.6 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons