Please use this identifier to cite or link to this item:
Title: Nanoparticles in Magnetic Resonance Imaging: from simple to dual contrast agents
Author: Estelrich i Latràs, Joan
Sánchez Martín, Ma. Jesús
Busquets i Viñas, Ma. Antonia
Keywords: Nanopartícules
Òxid de ferro
Imatges per ressonància magnètica
Ferric oxide
Magnetic resonance imaging
Issue Date: 31-Jan-2015
Publisher: Dove Medical Press
Abstract: Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for non-invasive clinical diagnosis due to its high degree of soft-tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin-lattice relaxation and T2, spin-spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can furthermore incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents.
Note: Reproducció del document publicat a:
It is part of: International Journal of Nanomedicine, 2015, vol. 10, num. 1, p. 1727-1741
Related resource:
ISSN: 1176-9114
Appears in Collections:Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))
Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)

Files in This Item:
File Description SizeFormat 
650326.pdf1.19 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons