Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/150007
Title: Invasive marine species discovered on non-native kelp rafts in the warmest Antarctic island
Author: Ávila Escartín, Conxita
Angulo-Preckler, Carlos
Martín-Martín, Rafael Pablo
Figuerola Balañá, Blanca
Griffiths, Huw James
Louise Waller, Catherine
Keywords: Espècies introduïdes
Antàrtic, Oceà
Introduced organisms
Antarctic Ocean
Issue Date: 31-Jan-2020
Publisher: Nature Publishing Group
Abstract: Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non-native kelp washed up on Antarctic beaches led us to question the permeability of these barriers to species dispersal. According to the literature, over 70 million kelp rafts are afloat in the Southern Ocean at any one time. These living, floating islands can play host to a range of passenger species from both their original coastal location and those picked in the open ocean. Driven by winds, currents and storms towards the coast of the continent, these rafts are often cited as theoretical vectors for the introduction of new species into Antarctica and the sub-Antarctic islands. We found non-native kelps, with a wide range of "hitchhiking" passenger organisms, on an Antarctic beach inside the flooded caldera of an active volcanic island. This is the first evidence of non-native species reaching the Antarctic continent alive on kelp rafts. One passenger species, the bryozoan Membranipora membranacea, is found to be an invasive and ecologically harmful species in some cold-water regions, and this is its first record from Antarctica. The caldera of Deception Island provides considerably milder conditions than the frigid surrounding waters and it could be an ideal location for newly introduced species to become established. These findings may help to explain many of the biogeographic patterns and connections we currently see in the Southern Ocean. However, with the impacts of climate change in the region we may see an increase in the range and number of organisms capable of surviving both the long journey and becoming successfully established.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41598-020-58561-y
It is part of: Scientific Reports, 2020, vol. 10, p. 1639
URI: http://hdl.handle.net/2445/150007
Related resource: https://doi.org/10.1038/s41598-020-58561-y
ISSN: 2045-2322
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
695779.pdf1.55 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons