Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/150446
Title: | Global dynamics of the real secant method |
Author: | Garijo Real, Antonio Jarque i Ribera, Xavier |
Keywords: | Teoria de la bifurcació Funcions de diverses variables complexes Bifurcation theory Functions of several complex variables |
Issue Date: | 14-Oct-2019 |
Publisher: | IOP Publishing |
Abstract: | We investigate the root finding algorithm given by the secant method applied to a real polynomial $p$ as a discrete dynamical system defined on $\mathbb{R}^{2}$ . We study the shape and distribution of the basins of attraction associated to the roots of p , and we also show the existence of other stable dynamics that might affect the efficiency of the algorithm. Finally we extend the secant map to the punctured torus $\mathbb{T}_{\infty}^{2}$ which allow us to better understand the dynamics of the secant method near $\infty$ and facilitate the use of the secant map as a method to find all roots of a polynomial. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1088/1361-6544/ab2f55 |
It is part of: | Nonlinearity, 2019, vol. 32, num. 11, p. 4557-4578 |
URI: | https://hdl.handle.net/2445/150446 |
Related resource: | https://doi.org/10.1088/1361-6544/ab2f55 |
ISSN: | 0951-7715 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
695992.pdf | 1.01 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.